Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Materials

N, P co-doping triggered phase transition of MoS₂ with enlarged interlayer spacing for

efficient hydrogen evolution

Ailing Feng^a, Shijiu Ding^a, Peitao Liu^{*,a}, Yanqing Zu^a, Fengbo Han^a, Xiaodong Li^a, Liang Liu^a and Yanan

Chen^a

^a Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016,

China

Corresponding author: Tel: 0917-3627689; E-mail: liupt@bjwlxy.edu.cn

Figure S1. (a) SEM results of N-MoS₂ and (b) N, P co-doped MoS₂ nanosheet.

Figure S2. XRD results of N-MoS₂ 1-1, N-MoS₂ 1-2, N-MoS₂ 1-4 and N-MoS₂ 1-8.

Figure S3. Electrochemical Test Diagram of N-MoS₂. (a) The LSV curves, (b) the overpotential, (c) the corresponding Tafel slope, and (d) the electrochemical impedance of N-MoS₂ 1-1, N-MoS₂ 1-2, N-MoS₂ 1-4

and N-MoS₂1-8.

Figure S4. XRD results of N-MoS₂, N, P-MoS₂-20, N, P-MoS₂-50 and N, P-MoS₂-200.

Figure S5. Electrochemical Test Diagram of N, P-MoS₂. (a) The LSV curves, (b) the overpotential, (c) the corresponding Tafel slope, and (d) the electrochemical impedance of N-MoS₂ 1-2, N, P-MoS₂-20, N, P-

MoS₂-50, N, P-MoS₂-200.

Figure S6. Electrochemical capacitance measurements were performed to determine the ECSA of (a) Pt/C,

(b) N, P-MoS $_2$ and (c) N-MoS $_2$.

Figure S7.*i*-*t* curves of commercial Pt/C.

Figure S8. The XRD results for the N, P-MoS₂ before and after HER activity.

Figure s9. (a)-(b) The TEM and HRTEM results for the N, P-MoS₂ before and after HER activity.

Figure S10. (a) The Mo 3d XPS spectrum, (b) S 2p XPS spectrum, (c) N 1s XPS, and (f) P 2p XPS spectrum of the N, P-MoS₂ before and after HER activity.

Figure S11. (a) The free energy diagram for HER on 2H N-MoS₂, 2H N, P-MoS₂, IT N-MoS₂, and 1T N, P-MoS₂ N sites, respectively. (b) The free energy diagram for HER on 2H N, P-MoS₂ and 1T N, P-MoS₂ P

sites, respectively.

Table S1. Comparison of the HER performances of N, P-MoS₂ with some of the previously reported MoS₂based catalysts.

Catalyst	Electrolytes	Potential	η	Reference
N, P-MoS $_2$	0.5 M H ₂ SO ₄	179 mV	10 mA/cm^2	This work
MoS ₂ /graphite	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	183 mV	10 mA/cm ²	[1]
$Zn@MoS_2$	$0.5 \text{ M H}_2 \text{SO}_4$	194 mV	10 mA/cm ²	[2]
1T/2H-MoS ₂ nanosheets	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	220 mV	10 mA/cm ²	[3]
Monolayer MoS ₂	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	160 mV	10 mA/cm ²	[4]
1T-MoS ₂ ultra-thin	$0.5 \text{ M H}_2\text{SO}_4$	254 mV	10 mA/cm^2	[5]
flakes				[3]
EA-2H/1T/RGO	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	186 mV	10 mA/cm^2	[6]
O-MoS ₂ /G	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	200 mV	20 mA/cm ²	[7]
$O, P-MoS_2$	$0.5 \text{ M H}_2\text{SO}_4$	277 mV	50 mA/cm ²	[8]
Co ₉ S ₈ /NC@MoS ₂	1 M PBS	261 mV	10 mA/cm ²	[9]
MoP	1 M PBS	187 mV	10 mA/cm^2	[10]
Co ₉ S ₈ @MoS ₂ /CNFs	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	190 mV	10 mA/cm ²	[11]

Notes and references

- C. C. Cheng, A. Y. Lu, C. C. Tseng, X. Yang, M. N. Hedhili, M. C. Chen, L. J. Li, *Nano Energy*, 2016, 30, 846-852.
- 2. W. Wu, C. Niu, C. Wei, Y. Jia, C. Li, Q. Xu, Angew. Chem. Int. Edit., 2019, 58, 2029-2033.
- 3. Z. Liu, Z. Gao, Y. Liu, M. Xia, R. Wang, N. Li, ACS Appl. Mater. Inter., 2017, 9, 25291-25297.
- 4. Y. Xu, L. Wang, X. Liu, S. Zhang, C. Liu, D. Yan, S. Luo, J. Mater. Chem. A, 2016, 4, 16524-16530.

- 5. F. Yang, Z. F. Cao, J. Wang, S. Wang, H. Zhong, Int. J. Hydrogen. Energ., 2019, 44, 21229-21237.
- 6. K. Zhang, B. Jin, Y. Gao, S. Zhang, H. Shin, H. Zeng, J. H. Park, Small, 2019, 15, 1804903.
- 7. J. Guo, F. Li, Y. Sun, X. Zhang, L. Tang, J. Power Sources, 2015, 291, 195-200.
- 8. J. Liu, Z. Wang, J. Li, L. Cao, Z. Lu, D. Zhu, Small, 2020, 16, 1905738.
- H. Li, X. Qian, C. Xu, S. Huang, C. Zhu, X. Jiang, L. Hou, ACS Appl. Mater. Inter., 2017, 9, 28394-28405.
- 10. B. Kim, T. Kim, K. Lee, J. Li, ChemElectroChem, 2020, 7, 3578-3589.
- 11. H. Zhu, J. Zhang, R. Y. zhang, M. Du, Q. Wang, G. Gao, X. Zhang, Adv. Mater., 2015, 27, 4752-4759.