Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

New Journal of Chemistry

Supplementary Information

Dinuclear dysprosium Schiff base complex showing slow magnetic relaxation in the absence of an external magnetic field

Mamo Gebrezgiabher^{a,b}, Sören Schlittenhardt^c, Cyril Rajnák^b, Juraj Kuchár^d, Assefa Sergawie^a, Juraj Černák^d, Mario Ruben^{c,e,f,*}, Madhu Thomas^{a,*} and Roman Boča^b

^aDepartment of Industrial Chemistry, College of Applied Sciences, Nanotechnology Excellence

Center, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia.

^bDepartment of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius 91701 Trnava, Slovakia.

^cInstitute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1,76344 Eggenstein-Leopoldshafen, Germany.

^dDepartment of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia.

^eInstitute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

^fCentre Européen de Science Quantique (CESQ); Institut de Science et d'Ingénierie Supramoléculaires (ISIS, UMR 7006), CNRS-Université de Strasbourg, 8 allée Gaspard Monge BP 70028 67083 Strasbourg Cedex, France.

Fig. S1 IR spectrum of complex 1.

Fig. S2 View of the packing of the structure of **1** along *a* axis. Only the shared polyhedra around the Dy(III) central atoms are shown for clarity.

Table S1	Crystal	data and	structure	refinement	for	complex	1.
	~						

Empirical formula	$C_{30}H_{36}$ Dy ₂ N ₆ O ₁₅ ·(CH ₃ OH) _{1.2}
Formula weight	1082.86
Temperature/K	299.15
Crystal system	trigonal
Space group	R-3
a/Å	27.0452(8)
b/Å	27.0452(8)
c/Å	29.7710(7)
α/°	90
β/°	90

$\gamma/^{\circ}$	120
Volume/Å ³	18858.4(12)
Ζ	18
$\rho_{calc} g/cm^3$	1.716
μ/mm^{-1}	3.611
F(000)	9546.0
Crystal size/mm ³	$0.356 \times 0.196 \times 0.171$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.8 to 51.99
Index ranges	$-32 \le h \le 12, -24 \le k \le 33, -29 \le l \le$
	36
Reflections collected	15170
Independent reflections	8246 [$R_{int} = 0.0237, R_{sigma} = 0.0390$]
Data/restraints/parameters	8246/4/530
Goodness-of-fit on F ²	1.025
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0276, wR_2 = 0.0618$
Final R indexes [all data]	$R_1 = 0.0372, wR_2 = 0.0662$
Largest diff. peak/hole / e Å ⁻³	0.70/-0.47

Table S2 Selected bond distances and bond angles in angstrom (Å) and degree (°), respectively.

O21Dy2	2.334(3) Å
O32Dy2	2.436(3) Å
O5Dy2	2.447(3) Å
O4Dy2	2.553(4) Å
O8Dy2	2.456(3) Å
O7Dy2	2.570(3) Å
O11Dy2	2.330(3) Å
O31Dy2	2.293(2) Å
N31Dy2	2.480(5) Å
O11Dy1	2.333(3) Å
O12Dy1	2.404(3) Å
O22Dy1	2.436(4) Å
O21Dy1	2.329(3) Å
O2Dy1	2.477(4) Å
N21Dy1	2.488(3) Å

O1 Dy1	2.634(4) Å
N11Dy1	2.537(5) Å
O31Dy1	2.366(2) Å
Dy2Dy1	3.4552(8)Å
011021	2.697(5) Å
021031	2.625(3) Å
011031	2.799(4) Å
Dy1O31Dy2	95.74(1)°
Dy1O21Dy2	95.63(1)°
Dy1O11Dy2	95.64(1)°

Table S3 Results of the Continuous Shape Measures calculations using the Program SHAPE ⁵⁴

			S	HAPE v2	2.1			
EP-9		1 D9h	Enneagon					
OPY-9		$2 C_8 v$	Octagonal p	agonal pyramid				
HBPY-9		3 D ₇ h	Heptagonal	bipyramid				
JTC-9		4 C ₃ v	Johnson tria	ngular cupol	a J3			
JCCU-9		$5 C_4 v$	Capped cube	e J8				
CCU-9		6 C ₄ v	Spherical-re	laxed capped	l cube			
JCSAPR-	9	7 C ₄ v	Capped squa	are antiprism	J10			
CSAPR-9)	8 C ₄ v	Spherical ca	pped square	antiprism			
JTCTPR-	9	9 D ₃ h	Tricapped tr	igonal prism	J51			
TCTPR-9)	10 D ₃ h S	pherical trica	apped trigona	ıl prism			
JTDIC-9		11 C ₃ v	Tridiminish	ed icosahedro	on J63			
HH-9		12 C ₂ v	Hula-hoop					
MFF-9		13 Cs	Muffin					
Structure	[ML9]	EP-9 C	PY-9 HB	РҮ-9 ЈТ	C-9 JCC	CU-9 (CCU-9 JC	CSAPR-9
CSAPR-9) JTCTF	PR-9 TCT	PR-9 JTDIC	C-9 HH-9	MFF-9			
Dy1	36.890,	20.900,	19.377,	14.692,	10.430,	9.157,	2.307,	1.760,
2.610,	1.206,	11.087,	10.850,	1.640				
Dy2	36.192,	21.362,	19.416,	14.324,	10.569,	9.227,	3.045,	2.293,
3.102,	1.520,	10.542,	12.052,	2.580				

Table S4 Possible hydrogen bonds in $1 [Å,^{\circ}]$

D–H···A	d(D–H)	$d(D \cdots A)$	$d(H \cdots A)$	D–H···A
O41–H41…O8	0.82	2.7662(1)	2.02	150
O22–	0.81	2.8751(1)	2.06	178
H221…O6 ⁱ				
O12–	0.82	2.7526(1)	1.94	176
H121…O41 ⁱ				
O32–H321…	0.81	2.9614(1)	2.17	165
O3 ⁱⁱ		. ,		

Symmetry codes: i: 1/3-x+y, 2/3-x, -1/3+z; ii: 2/3-y, 1/3+x-y, 1/3+z;

	Table 55 Additional non covarent contacts in 1 [A,]						
D–H···A	d(D–H)	$d(D \cdots A)$	d(H···A)	D–H···A			
C19–	0.96	3.279(8)	2.69	120			
H19A…O41 ⁱ							
C35–	0.93	3.574(8)	2.69	160			
H35…O41 ⁱⁱⁱ							
$C28-H28\cdots O5^{i}$	0.98	3.209(6)	2.46	133			
$C36-H36\cdots O3^{iv}$	1.01	3.400(8)	2.65	131			
$C27-H27\cdots O9^{v}$	0.81	3.507(7)	2.63	150			
C36–H36…O9 ^{vi}	1.01	3.403(5)	2.70	127			
C37–	0.97	3.450(6)	2.63	142			
H37B…O9 ^{vi}							

Table S5 Additional non-covalent contacts in **1** [Å,°]

Symmetry codes: i: 1/3-x+y, 2/3-x, -1/3+z; ii: 2/3-y, 1/3+x-y, 1/3+z; iii: -1/3+y, 1/3-x+y, 1/3+z;

iv: x-y, x, 1-z; v: 1-x, 1-y, 1-z; vi: -1/3+y, 1/3-x+y, 4/3-z.

B/T	χs	$\chi_{ extsf{t}(LF)}$	$lpha_{LF}$	$\tau_{\rm LF}/{ m ms}$	$\chi_{ extsf{t}(extsf{hf})}$	$lpha_{HF}$	<i>τ</i> _{HF} /μs
0.0	60.0	60.7	0.22	0.33	69	0.01	5.4
0.1	10.1	11.3	0.50(12)	20.9(83)	68.6(1)	0.25(4)	2.1
0.2	10.0	13.4	0.50(5)	49.8(77)	67.2(2)	0.23(7)	1.7
0.3	50.2	56.6	0.46(3)	48.2(39)	65.2(2)	0.30(28)	3.3
0.4	40.4	50.3	0.42(2)	51.0(27)	61.8(2)	0.60(50)	0.10
0.5	28.8	42.0	0.40(1)	56.5(20)	56.5(2)	0.60(37)	0.31

Table S6 Fitted AC susceptibility data at T = 2.0 K^a

 $\frac{0.5}{^{a}\text{AC}} \frac{28.8}{^{c}\text{susceptibility components in unit of } 10^{-6} \text{ m}^{3} \text{ mol}^{-1} \text{ [SI]. Standard deviation is not displayed} when its value is greater than the value of the optimized parameter. Note: 20.9(83) means 20.9 ± 8.3.$

The Debye equation for AC susceptibility can be extended to the two-set Debye model

$$\chi(\omega) = \chi_{s} + \frac{\chi_{T1} - \chi_{s}}{1 + (i\omega\tau_{1})^{1-\alpha_{1}}} + \frac{\chi_{T2} - \chi_{T1}}{1 + (i\omega\tau_{2})^{1-\alpha_{2}}}$$

which splits into the in-phase component

$$\chi'(\omega) = \chi_{S} + (\chi_{T1} - \chi_{S}) \frac{1 + (\omega\tau_{1})^{1-\alpha_{1}} \sin(\pi\alpha_{1}/2)}{1 + 2(\omega\tau_{1})^{1-\alpha_{1}} \sin(\pi\alpha_{1}/2) + (\omega\tau_{1})^{2-2\alpha_{1}}} + (\chi_{T2} - \chi_{T1}) \frac{1 + (\omega\tau_{2})^{1-\alpha_{2}} \sin(\pi\alpha_{2}/2)}{1 + 2(\omega\tau_{2})^{1-\alpha_{2}} \sin(\pi\alpha_{2}/2) + (\omega\tau_{2})^{2-2\alpha_{2}}}$$

and the out-of-phase component

$$\chi''(\omega) = (\chi_{T1} - \chi_S) \frac{(\omega\tau_1)^{1-\alpha_1} \cos(\pi\alpha_1/2)}{1 + 2(\omega\tau_1)^{1-\alpha_1} \sin(\pi\alpha_1/2) + (\omega\tau_1)^{2-2\alpha_1}} + (\chi_{T2} - \chi_{T1}) \frac{(\omega\tau_2)^{1-\alpha_2} \cos(\pi\alpha_2/2)}{1 + 2(\omega\tau_2)^{1-\alpha_2} \sin(\pi\alpha_2/2) + (\omega\tau_2)^{2-2\alpha_2}}$$

with the constraint for the isothermal and adiabatic susceptibilities $\chi_S < \chi_{T1} < \chi_{T2}$ in order to get positive contributions from each primitive component.