Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information

A simple fluorescent switch with four states based on benzothiazole-spiropyran

for reversible multicolor display and anti-counterfeiting

Danyang Liu *ab

^a Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry

(CAF), Nanjing, 210042, PR China

^b State Key Laboratory of Supramolecular Structure and Materials, College of

Chemistry, Jilin University, Changchun, 130012, P. R. China

Email: 15850527485@163.com

Table of contents

1. NMR and LC-HMRS spectra of SP-OX-HBT and its isomers (Figure S1, S2)

- 2. Absorption spectra of SP-OX-HBT and its isomers in solution (Figure S3-S5)
- 3. Absorption, emission spectra and corresponding pictures of the solid powder (Figure S6)
- 4. Illustration of the structure of paper (Figure S7)

1. NMR and LC-HMRS spectra of SP-OX-HBT and its isomers

Figure S1 The ¹H NMR spectra and LC-HMRS of (a) SP-OX-HBT in CD₃OD (b) SP-OX-HBT

with equivalent base in DMSO and (c) SP-OX-HBT with excess base in DMSO.

Figure S2 The partial ¹H NMR spectra of SP-HBT-C and SP-HBT-CN in DMSO-d6. It is clearly shown that methylene and hydrogens nearing the non-conjugated nitrophenol are shifted to the high field in ¹H-NMR spectrum of SP-HBT-CN. At the same time, the disappearance of the OH peak of SP-HBT-CN molecule also indicates the formation of phenol anion.

2. Absorption spectra of SP-OX-HBT and its isomers in solution

Figure S3 (a) The transformation of SP-OX-HBT upon base or visible light irradiation. (b) The absorption spectra of SP-OX-HBT with different equivalent base in CH₃CN solution. (c) The absorption spectra of SP-OX-HBT upon visible light irradiation with different time in CH₃CN

solution.

Figure S4 (a) The transformation of SP-HBT-C stimulated by alkali. (b) UV-Vis absorption spectra of SP-HBT-C without, with addition of t-BuONa immediately and equilibrium for 1 min in CH_2Cl_2 solution and corresponding photographs.

Figure S5 The structural transformation, UV-Vis absorption spectra and fluorescence spectra of (a)

SP-HBT-C, (b) SP-HBT, (c) HBT with different equivalent methanesulfonic acid in CH₃CN solution.

3. Absorption, emission spectra and corresponding pictures of the solid powder

Figure S6 Pictures of solid powders in various states under visible light and 365 nm UV lamp and their corresponding (a) UV-Vis absorption spectra and (b) fluorescence spectra; (c) the UV-Vis absorption spectra of SP-HBT-C before and after acid/base stimulation; (d) the fluorescence spectra of SP-HBT-C before and after acid/base stimulation.

4. Illustration of the structure of paper

Figure S7 Illustration of the three-layer structure of rewritable paper based on the SP-HBT-C.