Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Identification of pyridine derivative of diselenides as potent inhibitors of main protease of SARS-CoV-2 through *in silico* screening and biochemical evaluation

B. G. Singh^{1,3,*}, V.V. Gandhi^{1,3}, P.P. Phadnis^{2,3}, A. Kunwar^{1,3,*}

¹Radiation & Photochemistry Division, ²Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India

³Homi Bhabha National Institute, Anushaktinagar, Mumbai –400094, India *Email: <u>beenam@barc.gov.in; kamit@barc.gov.in</u>

Supplementary methods

Synthesis of 2, 2'-Diselenobis-(pyridine) [2-C5H4N-Se]2 or 2-Py2Se2:

The above compound was synthesized using method described previously¹. In a typical experiment, 2-bromopyridine (0.5 g, 31.5 mmol) was added to an aqueous brown solution of Na2Se2 (prepared from selenium powder (2.5 g, 31.67 mmol) in deoxygenated water and sodium borohydride (1.2 g, 31.5 mmol) at 0 °C under nitrogen. The reaction mixture was refluxed for 3 h till the solution became yellow containing a small amount of suspended selenium. The hot reaction mixture was filtered and allowed to cool to room temperature, whereupon dipyridyl diselenide crystallized out as yellow crystals and was filtered using a Buchner funnel to obtain crystalline Py₂Se₂ (2.03 g, 42%). M.p. 50-51 °C[1a]; (lit 47.5-50[1b,1c]) °C. Anal. Calcd. for C10H8N2Se2: Calcd. C, 38.23; H, 2.56; N, 8.92%. Found: C, 37.71; H, 2.45; N, 8.45%. IR (KBr, v cm-1): 3047, 1584, 452, 778. 1H NMR(CDCl3) δ : 7.07 (1H, t, J = 5.6 Hz, C5H4), d 7.53 (1H, t, J = 7.4 Hz, C5H4), d 7.78 (1H, d, J = 7.8 Hz, C5H4), d 8.44 (1H, d, J = 3.6 Hz, C5H4);13C{1H} NMR (CDCl3) δ : 121.2 (C-5),123.5 (C-3), 137.5 (C-4), 149.6 (C-6),154.4 (Se-C); 77Se{1H} NMR (CDCl3) δ : 447.5 ppm.

Synthesis of 2, 2'-Diseleno bis(3-nicotinamide) [2-NC5H3(3-CONH2)Se]2 or Nic2Se2:

The above compound was synthesized using method described previously². To an aqueous suspension of elemental Se (0.378 g, 4.788 mmol) in a three-necked round bottom flask, sodium borohydride (0.18 g, 4.788 mmol) was added slowly with stirring resulting into a dark red solution which was refluxed for 30 min. After cooling to room temperature, 2-choro-3-nicotinamide (0.75 g, 4.788 mmol) (synthesized by reaction 2-chloro-3-nicotinic acid with thionyl chloride (SOCl₂) followed by addition of liquid NH₃ and filtered on silica column by CHCl₃ eluent) was added slowly with stirring and the solution was refluxed for 5 h till the

yellow-colored clear solution was obtained. The solution was filtered in a beaker and allowed to cool whereupon a yellow solid was separated which was filtered out, washed thoroughly with cold distilled water and dried in vacuo (0.415 g, 43 %). The brownish filtrate remained after this was processed separately. The yellow solid was recrystallized from hot methanol at room temperature to afford yellow crystals of nicotinamide diselenide (0.17 g, 18 %), m. p. 230 °C (decomp). Analysis for nicotinamide diselenide C₁₂H₁₀N₄O₂Se₂: Calcd: C, 36.02; H, 2.52; N, 14.00%. Found C, 35.47; H, 2.59; N, 14.01%. NMR: ¹H NMR (dmso-d₆) δ: 7.28 (dd, 4.6, 7.6 Hz, 2H), 7.83, 8.33 (each br s, NH₂), 8.15 (d,d, 1.5, 7.8 Hz, 2H), 8.48 (d,d, 1.5, 4.6 Hz, 2H); ${}^{13}C{}^{1}H{}$ NMR (dmso-d₆) δ : 120.0, 128.3 (C-Se), 135.7, 151.8, 160.3 (C-3, py), 168.6 (CO); 77 Se{ 1 H} NMR (dmso-d₆) δ : 524 ppm. The brownish filtrate was extracted with CHCl₃ and after evaporation of solvent at room temperature the brownish crystalline compound was obtained. It was authenticated as a selone [2-NHC5H3(3-CONH2)Se] analogue of a dinicotinamide diselenide . It was characterized by NMR spectroscopy. It was converted finally to diselenide by aerial oxidation within 2 h. Characterization by NMR: ¹H NMR (dmso-d₆) δ : 7.20 (d, d, 4.5, 5.7 Hz, 1H), 7.95 (br s, 2 H, NH₂), 7.99 (d, d, 1.5, 4.5 Hz, 1 H), 8.40 (d, d, 1.2, 5.7 Hz, 1H), 9.79 (br s, NH) (resonances for a small concentration of diselenide were also noted since selone oxidizes slowly to dislenide); ${}^{13}C{}^{1}H$ NMR (dmso-d₆) δ : 116.3, 138.1, 141.6, 141.7, 142.5, 168.4; 77 Se{ 1 H} NMR (dmso-d₆) δ : 364 ppm.

References

1. (a) A. S. Hodage, C. P.Prabhu, P. P. Phadnis, A.Wadawale, K.I. Priyadarsini and V. K. Jain, Synthesis, characterization, structures and GPx mimicking activity of pyridyl and pyrimidyl based organoselenium compounds, J. Organomet. Chem., 720 (2012) 19-25; (b) F.P. Colonna, G. Distefano, V. Galasso, K. J. Irgolic, G. C. Pappalardo, L. Pope, Dipole moment and helium(I) photoelectron spectroscopic studies of the conformation of di-2-pyridyl and diphenyl dichalcogenides R2X2 (X = S, Se, or Te), J. Chem. Soc. Perkin Trans-II (1981) 281-285; (c) A. Toshimitsu, H. Owada, K. Terao, S. Uemura, M. Okano, Pyridylseleno group in organic synthesis. Preparation and oxidation of α -(2-pyridylseleno) carbonyl compounds leading to α , β -unsaturated ketones and aldehydes, J. Org. Chem., 49(1984) 3796-3800.

2. M. Raghuraman, P. Verma, A. Kunwar, P.P. Phadnis, V.K. Jain and K.I. Priyadarsini, Cellular evaluation of diselenonicotinamide (DSNA) as a radioprotector against cell death and DNA damage, Metallomics, 9 (2017) 715-725.

Supplementary tables

Table S1: The amino acid residues involved in binding of the representative orgnoselenium compounds with the SARS-CoV-2 M^{pro} protein (PDB Code: 6LU7).

Sr. Nos	Compounds	Amino acid in the receptor site involved in interaction with the compounds	Nature of interaction between Amino acids and selenium compounds
1	Diselenodipropanoic acid (DSePA)	Asn238 Thr199 Asn133 Thr135	
2	Selenocystine (CysSeSeCys)	Ser144, Oys145 	
3	Selenocystamine (DSePAmine)	Gly120 Chul4 G/15	
4	Methyl selenocysteine (MeSeCys)	Cys22 Thr24 Val42 Cys44	C122 C122 C124 C124 C125 C124 C125

20	3- Hydroselenopropana mine (SePAmine- she)	Anniez Voz	ASN A:142 VAL C:3
21	Nicotinamide	HIDHALL OF THE STATE	HIS A:43 MET A:43
22	ML188	Hist	KIGA CONTRACTOR CONTRA

Table S2: Concentration dependent changes in secondary structure of M^{pro} protein by Nict₂Se₂ (0.1 μ M-2.2 μ M) in terms of % distribution of peptide chains in various secondary structures (helix, parallel/anti parallel sheets, beta-turns and random coils) at various wavelengths ranges (200-260 nm, 205-260 nm and 210-260 nm).

S.N.	Sample		200-260 nm	205-260 nm	210-260 nm
1.	Native M ^{pro} protein	Helix	89.7 %	89.4 %	94.1 %
		Antiparallel	0.7 %	1.2 %	0.6 %
		Parallel	1.5 %	1.1 %	1.0 %
		Beta-Turn	7.1 %	8.3 %	6.8 %
		Rndm. Coil	10.3 %	6.6 %	4.5 %
		Total Sum	109.2 %	106.5 %	106.9 %
2.	M^{pro} protein + 0.1 μM Nict ₂ Se ₂	Helix	84.0 %	84.1 %	91.2 %
		Antiparallel	1.0 %	1.6 %	0.8 %
		Parallel	2.1 %	1.5 %	1.3 %
		Beta-Turn	8.1 %	9.3 %	7.6 %
		Rndm. Coil	13.8 %	8.9 %	6.0 %
		Total Sum	109.1 %	105.5 %	106.8 %
3.	M^{pro} protein + 0.3 μM Nict ₂ Se ₂	Helix	78.4 %	73.3 %	83.5 %
		Antiparallel	1.4 %	2.5 %	1.4 %
		Parallel	2.9 %	2.6 %	2.0 %
		Beta-Turn	9.0 %	10.9 %	9.2 %
		Rndm. Coil	18.0 %	13.4 %	9.3 %
		Total Sum	109.7 %	102.7 %	105.5 %
4.	M^{pro} protein + 0.7 μM Nict ₂ Se ₂	Helix	58.9 %	53.2 %	65.2 %
		Antiparallel	3.1 %	4.5 %	3.0 %
		Parallel	5.3 %	5.0 %	3.8 %
		Beta-Turn	11.7 %	13.5 %	12.0 %
		Rndm. Coil	27.8 %	22.5 %	16.8 %
		Total Sum	106.8 %	98.6 %	100.8 %
5.	M^{pro} protein + 1 μM Nict ₂ Se ₂	Helix	78.4 %	73.3 %	83.5 %
		Antiparallel	1.4 %	2.5 %	1.4 %
		Parallel	2.9 %	2.6 %	2.0 %
		Beta-Turn	9.0 %	10.9 %	9.2 %
		Rndm. Coil	18.0 %	13.4 %	9.3 %
		Total Sum	109.7 %	102.7 %	105.5 %
6.	M^{pro} protein + 1.3 μM Nict ₂ Se ₂	Helix	30.9 %	24.8 %	30.4 %
		Antiparallel	8.1 %	9.9 %	9.0 %
		Parallel	11.1 %	12.1 %	9.3 %
		Beta-Turn	16.2 %	17.9 %	17.3 %
		Rndm. Coil	43.5 %	41.0 %	35.1 %
		Total Sum	109.8 %	105.7 %	101.0 %
7.	M^{pro} protein + 1.6 μ M Nict ₂ Se ₂	Helix	31.3 %	27.3 %	31.5 %
		Antiparallel	8.3 %	9.2 %	8.7 %
		Parallel	10.5 %	11.0 %	9.1 %
		Beta-Turn	16.4 %	17.5 %	17.1 %
		Rndm. Coil	40.4 %	38.5 %	34.3 %
		Total Sum	106.9 %	103.6 %	100.7 %
8.	$M^{\mu\nu}$ protein + 2.2 μ M Nict ₂ Se ₂	Helix	27.1 %	24.2 %	27.9 %
		Antiparallel	9.6 %	10.2 %	9.8%
		Parallel	11.9 %	12.4 %	10.0 %
		Beta-Turn	17.1 %	18.1 %	17.8 %
		Rndm. Coil	43.8 %	41.5 %	37.0 %
		Total Sum	109.5 %	106.2 %	102.5 %

Fig. S1. NMR spectra (¹H) of 2, 2'-diselenobis (pyridine) ([2-C₅H₄N-Se]₂)

Fig. S2. NMR spectra (${}^{13}C{}^{1}H{}$) of 2, 2'-diselenobis (pyridine) ([2-C₅H₄N-Se]₂)

Fig. S3. NMR spectra (77 Se{ 1 H}) of 2, 2'-diselenobis (pyridine) ([2-C₅H₄N-Se]₂)

Fig. S4. ¹H NMR spectrum of [2-C₅H₃N(3-CONH₂)Se]₂ in dmso-d₆

Fig. S5. ${}^{13}C{}^{1}H$ NMR spectrum of $[2-C_5H_3N(3-CONH_2)Se]_2$ in dmso-d₆

Fig. S6. ⁷⁷Se{¹H} NMR spectrum of $[2-C_5H_3N(3-CONH_2)Se]_2$ in dmso-d₆ (δ : 524 ppm)

Fig. S7. ¹H NMR spectrum of [2-C₅H₃NH(3-CONH₂)Se] in dmso-d₆

Fig. S8. ⁷⁷Se{¹H} NMR spectrum of [2-C₅H₃NH(3-CONH₂)Se] in dmso-d₆ (δ : 364 ppm)

Fig. S9. ⁷⁷Se{¹H} NMR spectra in dmso-d₆ depicting conversion of [2-C₅H₃NH(3-CONH₂)Se] to [2-C₅H₃N(3-CONH₂)Se]₂ by aerial oxidation

Fig. S10. Absorption spectrum of 10 μ M 2-Py₂Se₂ in absence (a) and presence of 1 mM GSH (b). Inset (c) shows the time dependent absorbance at 340 nm obtained on treating 10 μ M 2-Py₂Se₂ with varying concentration of GSH (0.1 – 1 mM). These plots were fitted to first order exponential growth equation in origin software (version 8.0) to obtain the observed rate (kobs). Inset (d) and (e) shows the plot of kobs for 2-Py₂Se₂ and Nict₂Se₂ at different GSH concentration. Inset (f) shows the relative reactivity of the dislenides with 500 μ M GSH (black line = 2-Py₂Se₂ and red line = Nict₂Se₂).

Fig. S11. 50 mM Phosphate-EDTA buffer pH 7.4, containing 100 μ M NADPH and 6 mM DTNB was mixed with 50 nM rat liver TrxR in presence and absence of 15 ng M^{pro} (BPC Biosciences, Cat. no. 100823). The formation of TNB was followed by monitoring A412.