Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Visible light-promoted, photocatalyst-free decarboxylative alkylations

of 2H-indazoles via electron donor-acceptor-complex activation

Jin Wang,^{a,b} Qingyuan Song,^b Xing He,^b Chunhua Ma,^{b,*} Yuqin Jiang,^{b,*} Jing Fan,^{a,*}

^aSchool of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, E-mail: fanjing@htu.edu.cn

^bCollaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Jianshedong Road No. 46, Xinxiang 453007, P. R. China. E-mail: 2016007@htu.edu.cn; jiangyuqin@htu.edu.cn

Table of Contents

1. General information	2
2. Experimental procedures	3
3. Characterization of compounds	5
4. NMR copies of products	15
5. References	

1. General information

Cesium Carbonate (Cs₂CO₃) was purchased from Titan Technology, Shanghai, China. Other reagents were purchased from Bidepharm.com. Unless otherwise stated, all commercially available reagents were directly used without further purification. All solvents were purified by standard methods prior to use. All reactions were monitored by thin layer chromatography (TLC), and column chromatography was carried out on 100-200 mesh of silica gel purchased from Tansoole, Shanghai, China. All nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 600 MHz in CDCl₃ at room temperature (20 ± 3 °C), using tetramethylsilane as internal standard. High-resolution mass spectra (HRMS) were conducted on a 3000-mass spectrometer, using Bruker compact Qq TOF MS/MS system with the ESI technique.

Photochemical reaction was carried out under visible light irradiation by a blue LED at 25 °C. RLH-18 8-position Photo Reaction System manufactured by Beijing Roger Tech Ltd. was used in this system (See Figure A). Eight 10W blue LEDs were equipped in this Photo reactor. The blue LED's energy peak wavelength is 455 nm, peak width at half-height is 22.9 nm, lirradiance@10 W is 172.29 mW/cm². The reaction vessel is borosilicate glass test tube and no filters were applied.

Figure S1. The reaction apparatus and spectrum of blue LED

2. Experimental procedures

2.1 General Procedure for Redox-Active Esters Synthesis

To the round bottom flask were added carboxylic acid (5.0 mmol), *N*-hydroxyphthalimide (815.7 mg, 5.0 mmol), DMAP (30.5 mg, 0.25 mmol, 5.0 mol%) and DCM (25 mL), and then the mixture was stirred at room temperature. Then the EDCI (1.05 g, 5.5 mmol) was added and stirred for 4-12 hours. Upon completion monitored by the TLC, the mixture was filtered through a pad of Celite, washed with dichloromethane. The solution was washed with saturated sodium carbonate solution, and the organic layer was dried over anhydrous Na₂SO₄. The solution was then concentrated under reduced pressure and purified by silica gel column chromatography. Spectroscopic data for 2a,¹ 2o,² 2p,¹ 2q,¹ 2r,³ 2s,¹ 2t,³ 2u,⁴ and $2v^1$ were in agreement with the literature.

2.2 General experimental procedures for decarboxylative alkylation of

2H-indazoles

In a 10 mL reaction vial with a stirring bar, 2-aryl-2*H*-indazole **1** (0.2 mmol), NHPI ester **2** (3.0 equiv.), NaI (150 mol%) and PPh₃ (20 mol%) were added. The vial was then evacuated and backfilled three times with N₂, followed by adding DMSO (1.5 mL). The mixture was stirred at room temperature with 10 W blue LED irradiation for 12 h under a nitrogen atmosphere. After the reaction was completed, it was quenched with water (5 mL), and then the ethyl acetate (15 mL) was added three times for extraction. The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under vacuum. The residue was purified by silica gel chromatography to afford the desired product **3**.

2.3 Control experiments

Control experiments with TEMPO: In a 10 mL reaction vial with a stirring bar, 2phenyl-2*H*-indazole **1a** (0.2 mmol), cyclohexyl NHPI ester **2a** (3.0 equiv.), NaI (150 mol%) and PPh₃ (20 mol%), and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 3.0 equiv.) were added. The vial was then evacuated and backfilled three times with N₂, followed by adding DMSO (1.5 mL). The mixture was stirred at room temperature with 10 W blue LED irradiation for 12h under a nitrogen atmosphere. After the reaction was completed, it was quenched with water (5 mL), and then the ethyl acetate (15 mL) was added three times for extraction. No target product **3a** was generated.

2.4 UV-Vis mesurement

Stock solution of 2a (0.4 mol/L) and the mixture of 2a (0.4 mol/L), NaI (0.2 mol/L), and PPh₃ (0.027 mol/L) were prepared with the same concentration as the reaction using DMSO as the solvent.

Figure S2. UV/vis absorption spectra of the 2a and the mixture of 2a, NaI, and PPh₃ in DMSO

3. Characterization of compounds

3-cyclohexyl-2-phenyl-2H-indazole (3a)⁵

40.3 mg, 73%; White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.6 Hz, 1H), 7.71 (d, *J* = 8.8 Hz, 1H), 7.55–7.47 (m, 5H), 7.31–7.28 (m, 1H), 7.07-7.03 (m, 1H), 3.00–2.93 (m, 1H), 2.04–1.75 (m, 8H), 1.42–1.31 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 141.3, 140.3, 129.3, 129.1, 126.6, 126.5, 121.4, 120.7, 119.7, 118.0, 37.4, 32.7, 26.7, 26.0.

3-cyclohexyl-2-(p-tolyl)-2H-indazole (3b)⁵

39.3 mg, 68%; White solid; ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, J = 8.6 Hz, 1H), 7.71 (d, J = 8.8 Hz, 1H), 7.36–7.32 (m, 4H), 7.30–7.27 (m, 1H), 7.05-7.03 (m, 1H), 3.00–2.94 (m, 1H), 2.47 (s, 3H), 2.04–1.75 (m, 8H), 1.41–1.32 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 148.8, 141.3, 139.1, 137.8, 129.8, 126.3, 126.3, 121.3, 120.5, 119.5, 117.9, 37.4, 32.7, 26.7, 26.0, 21.4.

3-cyclohexyl-2-(4-ethylphenyl)-2H-indazole (3c)⁵

40.7 mg, 67%; Yellow solid; ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, *J* = 8.5 Hz, 1H), 7.70 (d, *J* = 8.8 Hz, 1H), 7.39–7.34 (m, 4H), 7.30–7.27 (m, 1H), 7.05-7.02 (m, 1H), 3.00–2.96 (m, 1H), 2.77 (q, *J* = 7.6 Hz, 2H), 2.02–1.75 (m, 8H), 1.39–1.29 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 148.9, 145.4, 141.2, 138.0, 128.7, 126.4, 121.4, 120.5, 119.6, 117.9, 37.4, 32.7, 28.8, 26.7, 26.0, 15.6.

3-cyclohexyl-2-(m-tolyl)-2H-indazole (3d)⁵

31.3 mg, 54%; Yellow solid; ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, *J* = 8.6 Hz, 1H), 7.71 (d, *J* = 8.7 Hz, 1H), 7.41 (t, *J* = 7.7 Hz, 1H), 7.32–7.23 (m, 3H), 7.24 (d, *J* = 7.7 Hz, 1H), 7.05–7.03 (m, 1H), 3.01–2.96 (m, 1H), 2.46 (s, 3H), 2.02–1.75 (m, 8H), 1.39– 1.30 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 148.9, 141.2, 140.2, 139.5, 129.8, 128.9, 127.3, 126.4, 123.4, 121.4, 120.6, 119.6, 118.0, 37.4, 32.7, 26.7, 26.0, 21.5.

3-cyclohexyl-2-(4-fluorophenyl)-2H-indazole (3e)⁵

35.9 mg, 61%; White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.6 Hz, 1H), 7.69 (d, *J* = 8.8 Hz, 1H), 7.48–7.43 (m, 2H), 7.32–7.28 (m, 1H), 7.26–7.21 (m, 2H), 7.07–7.03 (m, 1H), 2.95–2.87 (m, 1H), 2.03–1.76 (m, 8H), 1.41–1.31 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 161.6, 149.0, 141.5, 128.4, 128.3, 126.6, 121.3, 120.8, 119.6, 117.9, 116.4, 116.2, 37.5, 32.7, 26.7, 26.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.80.

2-(4-chlorophenyl)-3-cyclohexyl-2H-indazole (3f)⁵

40.9 mg, 66%; Yellow solid; ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, J = 8.5 Hz, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.53–7.51 (m, 2H), 7.44–7.41 (m, 2H), 7.31–7.29 (m, 1H), 7.06–7.04 (m, 1H), 2.96–2.91 (m, 1H), 2.05–1.72 (m, 8H), 1.40–1.30 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 149.2, 141.4, 138.8, 135.1, 129.5, 127.8, 126.7, 121.4, 120.9, 119.7, 118.0, 37.5, 32.7, 26.7, 26.0.

2-(4-bromophenyl)-3-cyclohexyl-2H-indazole (3g)⁵

50.4 mg, 71%; White solid; ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, *J* = 8.6 Hz, 1H), 7.70–7.67 (m, 3H), 7.38–7.35 (m, 2H), 7.31–7.28 (m, 1H), 7.06–7.04 (m, 1H), 2.96– 2.91 (m, 1H), 2.02–1.77 (m, 8H), 1.39–1.31 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 149.2, 141.3, 139.3, 132.5, 128.1, 126.7, 123.1, 121.4, 120.9, 119.7, 117.9, 37.5, 32.7, 26.7, 26.0.

3-cyclohexyl-2-(3-fluorophenyl)-2H-indazole (3h)

37.0 mg, 63%; Yellow solid; ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, J = 8.5 Hz, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.53–7.49 (m, 1H), 7.32–7.28 (m, 2H), 7.26–7.21 (m, 2H), 7.07-7.04 (m, 1H), 3.01–2.96 (m, 1H), 2.03–1.77 (m, 8H), 1.41–1.32 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 162.7 (d, J = 247.5 Hz), 149.2, 141.6 (d, J = 9.0 Hz), 141.3, 130.5 (d, J = 9.0 Hz), 126.8, 122.3 (d, J = 9.0 Hz), 121.4, 120.9, 119.7, 118.0, 116.2 (d, J = 21.0 Hz), 114.4 (d, J = 24.0 Hz), 37.5, 32.7, 26.7, 26.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.77.

2-(3-chlorophenyl)-3-cyclohexyl-2H-indazole (3i)⁵

37.2 mg, 60%; Reddish brown solid; ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, *J* = 8.6 Hz, 1H), 7.69 (d, *J* = 8.8 Hz, 1H), 7.54–7.46 (m, 3H), 7.38-7.36 (m, 1H), 7.31–7.29 (m, 1H), 7.07–7.04 (m, 1H), 2.98–2.93 (m, 1H), 2.03–1.77 (m, 8H), 1.41–1.32 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 149.2, 141.4, 141.3, 135.1, 130.2, 129.4, 127.1, 126.8, 124.7, 121.4, 121.0, 119.7, 118.0, 37.5, 32.7, 26.7, 26.0.

2-(3-bromophenyl)-3-cyclohexyl-2H-indazole (3j)⁵

42.6 mg, 60%; White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.6 Hz, 1H), 7.70–7.64 (m, 3H), 7.42–7.40 (m, 2H), 7.32–7.26 (m, 1H), 7.07-7.03 (m, 1H), 3.00– 2.92 (m, 1H), 2.04–1.77 (m, 8H), 1.43–1.33 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 141.4, 132.3, 130.4, 129.9, 126.8, 125.1, 122.8, 121.4, 121.0, 119.7, 118.0, 37.5, 32.7, 26.7, 26.0.

3-cyclohexyl-2-(3,5-dimethylphenyl)-2H-indazole (3k)

35.9 mg, 59%; White solid; ¹H NMR (600 MHz, CDCl₃) δ 7.85(d, J = 8.5 Hz, 1H), 7.71 (d, J = 8.8 Hz, 1H), 7.30–7.26 (m, 1H), 7.13 (s, 1H), 7.09 (s, 2H), 7.05–7.02 (m, 1H), 3.03–2.97 (m, 1H), 2.41(s, 6H), 2.03–1.76 (m, 8H), 1.40–1.31 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 148.9, 141.1, 140.1, 139.1, 130.7, 126.3, 124.2, 121.3, 120.5, 119.6, 117.9, 37.4, 32.7, 26.7, 26.0, 21.4. HRMS Calcd for C₂₁H₂₅N₂ [M + H]⁺ : m/z 305.2012, Found: 305.2005. 3-cyclohexyl-2-(3-fluoro-4-methylphenyl)-2H-indazole (31)

35.7 mg, 58%; White solid; ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, J = 8.6 Hz, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.34 (t, J = 8.1 Hz, 1H), 7.31–7.28 (m, 1H), 7.20-7.16 (m, 2H), 7.06–7.03 (m, 1H), 3.00–2.95 (m, 1H), 2.39 (d, J = 1.62 Hz, 3H), 2.05–1.76 (m, 8H), 1.40–1.30 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 161.0 (d, J = 244.5 Hz), 149.0, 141.3, 139.1 (d, J = 9.0 Hz), 131.7 (d, J = 6.0 Hz), 126.6, 126.2 (d, J = 18.0 Hz), 121.9 (d, J = 3 Hz), 121.4, 120.8, 119.6, 118.0, 113.8 (d, J = 25.5 Hz), 37.4, 32.7, 26.7, 26.0, 21.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.00. HRMS Calcd for C₂₂H₂₂FN₂ [M + H]⁺ : m/z 309.1762, Found: 309.1772.

3-cyclohexyl-5-methoxy-2-phenyl-2H-indazole (3m)

25.7 mg, 42%; Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 10.0 Hz, 1H), 7.55–7.45 (m, 5H), 7.04-7.01 (m, 2H), 3.89 (s, 3H), 2.98–2.90 (m, 1H), 1.97–1.75 (m, 8H), 1.38–1.03 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 145.9, 140.5, 139.9, 129.2, 128.9, 126.5, 121.2, 119.4, 119.2, 97.9, 55.7, 37.2, 32.4, 26.7, 26.0. HRMS Calcd for C₂₀H₂₃N₂O [M + H]⁺ : m/z 307.1805, Found: 307.1837.

5-chloro-3-cyclohexyl-2-phenyl-2H-indazole (3n)

42.2 mg, 68%; Gray solid; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 1.4 Hz, 1H), 7.64 (d, *J* = 9.2 Hz, 1H), 7.58–7.52 (m, 3H), 7.47–7.45 (m, 2H), 7.22 (dd, *J* = 1.9, 7.2 Hz, 1H), 2.98–2.90 (m, 1H), 1.94–1.75 (m, 8H), 1.42–1.30 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 141.2, 140.0, 129.4, 127.8, 126.5, 126.1, 120.02, 119.97, 119.5, 37.3, 32.7, 26.6, 25.9. HRMS Calcd for C₁₉H₂₀ClN₂ [M + H]⁺ : m/z 311.1310, Found: 311.1341.

3-cyclobutyl-2-phenyl-2H-indazole (30)⁵

33.4 mg, 67%; Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.6 Hz, 1H), 7.72 (d, *J* = 8.8 Hz, 1H), 7.54–7.47 (m, 5H), 7.33–7.29 (m, 1H), 7.10–7.06 (m, 1H), 3.99– 3.90 (m, 1H), 2.62–2.55 (m, 2H), 2.37–2.30 (m, 2H), 2.10–1.94 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 140.4, 139.3, 129.2, 128.9, 126.5, 126.2, 121.0, 120.6, 118.0, 33.1, 29.3, 19.1.

2-phenyl-3-(tetrahydro-2H-pyran-4-yl)-2H-indazole (3p)⁵

40.6 mg, 73%; White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.6 Hz, 1H), 7.72 (d, *J* = 8.8 Hz, 1H), 7.59–7.53 (m, 3H), 7.49–7.46 (m, 2H), 7.34–7.30 (m, 1H), 7.11–7.07 (m, 1H), 4.09 (d, *J* = 4.2 Hz, 1H), 4.06 (d, *J* = 4.3 Hz, 1H), 3.44–3.37 (m, 2H), 3.27–3.19 (m, 1H), 2.44–2.33 (m, 2H), 1.79 (dd, *J* = 2.0, 11.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 140.1, 139.0, 129.5, 129.4, 126.62, 126.56, 121.3, 120.8, 119.8, 118.2, 68.2, 34.7, 32.2.

tert-butyl (S)-2-(2-phenyl-2H-indazol-3-yl)piperidine-1-carboxylate (3q)

48.3 mg, 64%; White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.8 Hz, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.55–7.45 (m, 5H), 7.30–7.26 (m, 1H), 7.08–7.05 (m, 1H), 5.71–5.68 (m, 1H), 3.90–3.84 (m, 1H), 3.12–3.05 (m, 1H), 2.01–1.94 (m, 1H), 1.73– 1.65 (m, 1H), 1.58–1.46 (m, 4H), 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 129.4, 129.2, 126.4, 125.9, 122.0, 121.0, 120.3, 118.2, 80.3, 51.0, 41.4, 28.6, 28.5, 24.2, 20.0. HRMS Calcd for C₂₃H₂₈N₃O₂ [M + H]⁺ : m/z 378.2176, Found: 378.2193.

3-(tert-butyl)-2-phenyl-2H-indazole (3r)⁵

24.0 mg, 48%; White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.8 Hz, 1H), 7.67 (d, *J* = 8.7 Hz, 1H), 7.53–7.42 (m, 5H), 7.30–7.26 (m, 1H), 7.07–7.03 (m, 1H), 1.43 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 144.6, 143.1, 129.5, 128.6, 128.2, 126.1, 122.7, 120.9, 119.8, 118.0, 32.0.

3-((3r,5r,7r)-adamantan-1-yl)-2-phenyl-2H-indazole (3s)⁵

28.9 mg, 44%; White solid; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.8 Hz, 1H), 7.67 (d, *J* = 8.7 Hz, 1H), 7.51–7.41 (m, 5H), 7.29–7.25 (m, 1H), 7.05–7.01 (m, 1H), 2.14 (d, *J* = 2.7 Hz, 6H), 1.99 (s, 3H), 1.73–1.65 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 144.8, 143.5, 129.4, 128.5, 128.3, 126.0, 123.1, 120.6, 119.6, 118.0, 42.7, 37.9, 36.5, 28.7.

3-hexyl-2-phenyl-2H-indazole (3t)⁵

49.5 mg, 89%; Yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 8.8 Hz, 1H), 7.68 (d, *J* = 8.5 Hz, 1H), 7.56–7.48 (m, 5H), 7.33–7.26 (m, 1H), 7.09–7.06 (m, 1H), 3.03 (t, 2H), 1.68–1.63 (m, 2H), 1.26–1.24 (m, 4H), 0.83–0.81 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 140.2, 137.1, 129.3, 129.0, 126.7, 126.3, 121.2, 121.0, 120.4, 117.7, 31.6, 29.2, 25.4, 22.3, 14.0.

2-phenyl-3-(3-phenylpropyl)-2H-indazole (3u)⁵

20.0 mg, 32%; Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.8 Hz, 1H), 7.62 (d, J = 8.5 Hz, 1H), 7.53–7.49 (m, 5H), 7.34–7.30 (m, 1H), 7.27–7.23 (m, 2H), 7.20–7.16 (m, 1H), 7.10–7.05 (m, 3H), 3.07 (t, J = 7.6 Hz, 2H), 2.60 (t, J = 7.5 Hz, 2H), 2.03–1.95 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 141.3, 140.1, 136.4, 129.3, 129.0, 128.54, 128.45, 126.8, 126.20, 126.15, 121.3, 121.2, 120.3, 117.8, 35.5, 30.9, 24.9.

3-(5-(2,5-dimethylphenoxy)-2-methylpentan-2-yl)-2-phenyl-2H-indazole (3v)⁵

46.2 mg, 58%; White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.8 Hz, 1H), 7.69 (d, J = 8.7 Hz, 1H), 7.54–7.43 (m, 5H), 7.32–7.28 (m, 1H), 7.08–7.04 (m, 1H), 6.99 (d, J = 7.4 Hz, 1H), 6.65 (d, J = 7.5 Hz, 1H), 6.53 (s, 1H), 3.82 (t, J = 6.1 Hz, 2H), 2.28 (s, 3H), 2.15 (s, 3H), 1.99–1.94 (m, 2H), 1.67–1.59 (m, 2H), 1.43 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 148.6, 143.0, 142.9, 136.6, 130.4, 129.6, 128.7, 128.0, 126.2, 123.6, 122.5, 121.2, 120.9, 120.5, 118.0, 112.0, 67.9, 40.8, 38.2, 30.3, 25.5, 21.5, 16.0.

4. NMR copies of products

¹H NMR spectrum of 3a

¹³C NMR spectrum of 3a

¹H NMR spectrum of 3b

¹³C NMR spectrum of 3b

¹H NMR spectrum of 3c

¹³C NMR spectrum of 3c

¹H NMR spectrum of 3d

¹³C NMR spectrum of 3d

¹H NMR spectrum of 3e

¹³C NMR spectrum of 3e

¹⁹F NMR spectrum of 3e

¹H NMR spectrum of 3f

¹³C NMR spectrum of 3f

¹H NMR spectrum of 3g

¹³C NMR spectrum of 3g

¹H NMR spectrum of 3h

¹³C NMR spectrum of 3h

¹⁹F NMR spectrum of 3h

3h

¹⁹F NMR (376 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹H NMR spectrum of 3i

¹³C NMR spectrum of 3i

¹H NMR spectrum of 3j

¹³C NMR spectrum of 3j

¹H NMR spectrum of 3k

¹³C NMR spectrum of 3k

¹H NMR spectrum of 31

¹³C NMR spectrum of 31

¹⁹F NMR spectrum of 31

¹H NMR spectrum of 3m

¹³C NMR spectrum of 3m

¹H NMR spectrum of 3n

¹³C NMR spectrum of 3n

¹H NMR spectrum of 30

¹³C NMR spectrum of 30

¹H NMR spectrum of 3p

¹³C NMR spectrum of 3p

¹H NMR spectrum of 3q

¹³C NMR spectrum of 3q

¹H NMR spectrum of 3r

¹³C NMR spectrum of 3r

¹H NMR spectrum of 3s

¹³C NMR spectrum of 3s

¹H NMR spectrum of 3t

¹³C NMR spectrum of 3t

¹H NMR spectrum of 3u

¹³C NMR spectrum of 3u

¹H NMR spectrum of 3v

¹³C NMR spectrum of 3v

5. References

Zhang, Y. L.; Yang, L.; Wu, J.; Zhu, C.; Wang, P., *Org. Lett.* 2020, 22, 7768-7772.
Mills, L. R.; Zhou, C.; Fung, E.; Rousseaux, S. A. L., *Org. Lett.* 2019, 21, 8805-8809.
Dai, P. F.i; Wang, Y. P., Qu, J. P., and Kang, Y. B., *Org. Lett.* 2021, 23, 9360–9364
Yang, T.; Jiang, Y.; Luo, Y.; Lim, J. J. H.; Lan, Y.; Koh, M. J., *J. Am. Chem. Soc.* 2020, *142*, 21410-21419.
Ma, C. H.; Feng, Z. W., Li, J.; Zhang, D. D.; Li, W.; Jiang, Y. Q.; Yu, B., *Org. Chem. Front.*, 2021, 8, 3286-3291.