Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Material (ESI) for New Journal of Chemistry

Supporting information

Core-Shell Co@CoO Catalysts for the Hydroformylation of Olefins

Wen Xu^a, Yuan Ma^a, Xinjia Wei^a, Honghui Gong^a, Xiuge Zhao^{a,*}, Yuxi Qin^a, Qingpo Peng^a, and

Zhenshan Hou^{a,*}

^aKey Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai 200237, China.

*Corresponding Authors

Prof. Zhenshan Hou,

E-mail: houzhenshan@ecust.edu.cn

Fig. S1. XPS spectra of Co 2p for Co@CoO-PEG after Argon ion sputtering.

Fig. S2. (a) FT-IR spectra of the filtrate after reaction on CoO_x -W catalyst; (b) XRD patterns of the residual solid after the solvent in the filtrate was evaporated.

Fig. S3. Time profile of the 1-octene hydroformylation catalyzed by Co@CoO-PEG. The solid squares denoted the original time profile of hydroformylation. The solid circles represent the catalytic activities without catalyst after hot filtration. Reaction condition: 50 mg catalyst, 2 mmol 1-octene, 4 MPa (CO/H₂, V/V=1), 10 ml toluene, 130 °C.

Fig. S4. The catalytic performance of Co@CoO-PEG in different solvents. Reaction condition: 50 mg catalyst, 2 mmol 1-octene, 4 MPa (CO/H₂, V/V=1), 10 ml solvent, 130 °C, 8 h. L:linear and B: branch

Fig. S5. The selectivity and conversion of 1-octene with different reaction time on (a) CoO_x -W and (b) Co@CoO-GLY catalysts. Reaction condition: 50 mg catalyst, 2 mmol 1-octene, 4 MPa (CO/H₂, V/V=1), 10 ml toluene, 130 °C. L:linear and B: branch

Fig. S6. XRD patterns of the spent Co@CoO-PEG catalyst after nine rounds.

Fig. S7. Co 2p XPS spectra of for the used Co@CoO-PEG catalyst after nine rounds.

Entry	Catalyst	Substrate	P _{H2/CO} (MPa)	T/°C	t/h	Con.(%)	Aldehyde Sel.(%)	Ref.
1	Fibrous	1-octene	5.5	150	12	92ª	-	1
	Co ₃ O ₄							
2	Octahedral	1-heptene	4	170	12	88	75	2
	Co ₃ O ₄							
3	Co/β-Mo ₂ C	propene	4	160	10	28 ^b	-	3
4	CoZrP-2.0	1-octene	4	160	6	99	91	4
5	Co/Q-6	1-hexene	5	130	2	37	88	5
6	Co-B	1-octene	5	120	2.5	71	99	6
7	Ultrafine	1-hexene	2.4	100	1	95	38	7
	cobalt							
8	Co/SiO ₂	1-hexene	5	100	5	61	90	8
9	Co/phen@C	1-octene	4	100	18	94	73	9
10	Co@CoO-	1-octene	4	130	8	99	97	This
	PEG							work

Table S1. Comparison of the catalytic performance of Co@CoO-PEG with those reported cobalt-based catalysts in the hydroformylation of olefin.

^aThe products includes alcohols, isomerized and hydrogenated substrates. ^bThe butyraldehydes and butanols were detected as products.

References

- 1. S. S. Bhagade, S. R. Chaurasia and B. M. Bhanage, *Catal. Today*, 2018, **309**, 147-152.
- J. E. Lee, D. H. Chun, G. B. Rhim, D. Deviana, H. D. Jeong, J. C. Park, K. Y. Koo,
 S. K. Jeong, C. S. Hong and M. H. Youn, *Fuel*, 2020, 269, 117397.
- B. Wei, X. Liu, Y. Deng, K. Hua, J. Chen, H. Wang and Y. Sun, ACS Catal., 2021, 11, 14319-14327.
- 4. H. Gong, X. Zhao, Y. Qin, W. Xu, X. Wei, Q. Peng, Y. Ma, S. Dai, P. An and Z. Hou, J. Catal., 2022, 408, 245-260.

- 5. Y. Zhang, K. Nagasaka, X. Qiu and N. Tsubaki, Catal. Today, 2005, 104, 48-54.
- 6. L. Ma, Q. Peng and D. He, Catal. Lett., 2009, 130, 137-146.
- Z. Cai, H. Wang, C. Xiao, M. Zhong, D. Ma and Y. Kou, J. Mol. Catal. A: Chem., 2010, 330, 94-98.
- J. Zhao, Y. He, F. Wang, W. Zheng, C. Huo, X. Liu, H. Jiao, Y. Yang, Y. Li and X. Wen, ACS Catal., 2019, 10, 914-920.
- M. F. Hertrich, F. K. Scharnagl, A. Pews-Davtyan, C. R. Kreyenschulte, H. Lund, S. Bartling, R. Jackstell and M. Beller, *Chem. Eur. J.*, 2019, 25, 5534-5538.