Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Facile solvothermally method assisted g-C₃N₄ post-grafting with aromatic amine dyes for highly photocatalytic hydrogen evolution

Xiaodi Chen,†^a Hailian Bao,†^a Shihang Liu,^a Xingliang Liu,^a Chao Zhang*^a

a. School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China. E-mail: *zhangchaoqhu@126.com*

Contents

1. The TEM images of g-C ₃ N ₄ , g-C ₃ N ₄ /TPA-CNCHO, g-C ₃ N ₄ /PTZ-C	NCHO,				
g-C ₃ N ₄ /CZ-CNCHO.	S2				
2. The element map of g-C ₃ N ₄ /TPA-CNCHO.	S2				
3. The N ₂ adsorption desorption isotherms and pore size distribution of	g-C ₃ N ₄ ,				
g-C ₃ N ₄ /TPA-CNCHO, g-C ₃ N ₄ /PTZ-CNCHO and g-C ₃ N ₄ /CZ-CNCHO.	S 3				
4 The surface area and pore diameter of g-C ₃ N ₄ , g-C ₃ N ₄ /TPA-C	NCHO,				
g-C ₃ N ₄ -PTZ-CNCHO and g-C ₃ N ₄ -CZ-CNCHO.	S3				
5 XPS spectra of C1s of g-C ₃ N ₄ (a) and g-C ₃ N ₄ /PTZ-CNCHO.	S 3				
6 Optical photos of relevant samples.	S4				
7 LSV curves of g-C ₃ N ₄ , g-C ₃ N ₄ /TPA-CNCHO, g-C ₃ N ₄ /PTZ-CNCHO) and				
g-C ₃ N ₄ /CZ-CNCHO.	S4				
8 The WCA of g-C ₃ N ₄ (a), g-C ₃ N ₄ /TPA-CNCHO (b), g-C ₃ N ₄ /PTZ-CNCHO	(c) and				
$g-C_3N_4/CZ-CNCHO$ (d).	S 5				
9 The photocatalytic hydrogen evolution rate of g-C ₃ N ₄ , g-C ₃ N ₄ /TPA-CNCE	IO and				
g-C ₃ N ₄ -TPA-CNCHO.	S 5				
10 The comparison of other dye grafted photocatalyst via Schiff's base reaction for					
photocatalytic H ₂ production or other use.	S6				
11 DFT calculated geometry structures and electron densities of LUMOs and HOMOs of					
TPA-CNCHO, PTZ-CNCHO and CZ-CNCHO at B3LYP/6-31G(d) level.	S6				

Fig. S1 The TEM images of samples (a) g-C₃N₄, (b) g-C₃N₄/TPA-CNCHO, (c) g-C₃N₄/PTZ-CNCHO, (d) g-C₃N₄/CZ-CNCHO.

Fig. S2 The element map of g-C₃N₄/TPA-CNCHO (C (green), N (purple), S (yellow)).

Fig. S3 The N₂ adsorption desorption isotherms and pore size distribution of samples (a) g-C₃N₄, (b) g-C₃N₄/TPA-CNCHO, (c) g-C₃N₄/PTZ-CNCHO and (d) g-C₃N₄/CZ-CNCHO.

Table S1. The surface area and pore diameter of g-C₃N₄, g-C₃N₄/TPA-CNCHO, g-C₃N₄-PTZ-CNCHO and g-C₃N₄-CZ-CNCHO.

Sample	$S_{BET}(m^2/g)$	Pore diameter _{-max} (nm)
g-C ₃ N ₄	95.0	34.9
g-C ₃ N ₄ -TPA-CNCHO	82.5	35.4
g-C ₃ N ₄ -PTZ-CNCHO	86.6	36.1
g-C ₃ N ₄ -CZ-CNCHO	88.1	35.9

Fig. S4 XPS spectra of C1s of g-C₃N₄(a) and g-C₃N₄/PTZ-CNCHO (b), N1s of g-C₃N₄(c) and N1s of g-C₃N₄/PTZ-CNCHO (d)

Fig. S5 Optical photos of relevant samples.

Fig. S6 LSV curves of g-C₃N₄, g-C₃N₄/TPA-CNCHO, g-C₃N₄/PTZ-CNCHO and g-C₃N₄/CZ-CNCHO.

Fig. S7 The WCA of g-C₃N₄ (a), g-C₃N₄/TPA-CNCHO (b), g-C₃N₄/PTZ-CNCHO (c) and g-C₃N₄/CZ-CNCHO (d).

 $Fig. \ S8 \ The \ photocatalytic \ hydrogen \ evolution \ rate \ of \ g-C_3N_4, \ g-C_3N_4/TPA-CNCHO \ and \ g-C_3N_4-TPA-CNCHO.$

Photocatalyst	Modification method	Modification conditions	Photocatalytic Reaction conditions	H ₂ production activity (n times of g-C ₃ N ₄)	Other photocatalytic activity	Ref.
		insert gas				
melamine /		PPL lined	triethanolamine	58.1		
p-benzaldehyde	copolymerizati	autoclave	(1EOA) $\lambda > 420 \text{ nm}$	(n=2)	none	81
	on	250°C,6h				
Urea/		550°C, 2h,	TEOA	226 μ mol·h ⁻¹		
p-benzaldehyde		5°C/min	420 nm<λ<780nm	(n=2)	none	S2
	Schiff's base					
g-C ₃ N ₄ /	reaction	250°C, 5h,	TEOA	92.4 μmol·h ⁻¹		62
p-benzaldehyde	(solid	5°C/min	λ≥420 nm	(n=4.1)	none	53
	medium)					
g-C3N4/ Feqpy-BA	Schiff's base reaction (liquid medium)	blue LED light 24°C	TEOA λ=460 nm	none	The number of CO_2 conversion is 2554 and the selectivity is 95%.	S4
g-C ₃ N ₄ / TPA-CNCHO g-C ₃ N ₄ / PTZ-CNCHO g-C ₃ N ₄ / CZ-CNCHO	Schiff's base reaction (liquid medium)	insert gas, DDM 240°C,15h	AA λ≥400 nm	$\begin{array}{c} 16232.7\\ \mu mol \cdot h^{-1} \cdot g^{-1}\\ (n=40)\\ 13266.9\\ \mu mol \cdot h^{-1} \cdot g^{-1}\\ (n=33)\\ 11822.8\\ \mu mol \cdot h^{-1} \cdot g^{-1}\\ (n=29)\end{array}$	none	this work

Table S2. The comparison of other dye grafted photocatalyst via Schiff's base reaction

for photocatalytic H₂ production or other use.

Fig. S9 DFT calculated geometry structures and electron densities of LUMOs and HOMOs of (a) TPA-CNCHO, (b) PTZ-CNCHO and (c) CZ-CNCHO at B3LYP/6-31G(d) level.

References

S1 X. Huang, Z. Wu, H. Zheng, W. Dong, G. Wang, A sustainable method toward melamine-based conjugated polymer semiconductors for efficient photocatalytic hydrogen production under visible light, Green Chem., 2017,

20, 664-670.

S2 X. Fan, L. Zhang, M. Wang, W. Huang, Y. Zhou, M. Li, R. Cheng, J. Shi, Constructing carbon-nitride-based copolymers via Schiff base chemistry for visible-light photocatalytic hydrogen evolution, Appl. Catal. B Environ., 2015, 182, 68-73.

S3 J. Tian, L. Zhang, X. Fan, Y. Zhou, M. Wang, R. Cheng, M. Li, X. Kan, X. Jin, Z. Liu, Y. Gao, J. Shi, A post-grafting strategy to modify $g-C_3N_4$ with aromatic heterocycles for enhanced photocatalytic activity, J. Mater. Chem. A, 2016, 4, 13814-13821.

S4 Y. Wei, L. Chen, H. Chen, L. Cai, G. Tan, Y. Qiu, Q. Xiang, G. Chen, T. Lau, M. Robert, Highly efficient photocatalytic reduction of CO_2 to CO by in situ formation of a hybrid catalytic system based on molecular iron quaterpyridine covalently linked to carbon nitride, Angew. Chem., Int. Ed., 2022. 10.1002 /ange202116832.