Electronic Supporting Information (ESI)

Emissive Dual-Sensitized Bimetallic Eu₂^{III}-Bioprobe: Design Strategy, Biological Interactions, and Nucleoli Staining Studies

Usha Yadav, ^a Madhu Verma,^b Zafar Abbas, ^a Sri Sivakumar^b, and Ashis K. Patra^{a*}

^a Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India

^b Department of Chemical Engineering and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India

Table of contents					
Figure S1: ¹ H NMR (500 MHz, Chloroform- <i>d</i>) of $[\mu$ -pz(tpy) ₂] ligand (L)	3				
Figure S2: ¹³ C NMR spectra (101 MHz, Chloroform- <i>d</i>) of [µ-pz(tpy) ₂] ligand (L)	4				
Figure S3: ESI-MS spectra of $[\mu$ -pz(tpy) ₂] ligand (L)	4				
Figure S4: FT-IR spectra of $[Eu_2(tta)_6(\mu-p_2(tpy)_2)]$ 1 and ligand L recorded in solid-state	5				
Table S1: Selected FT-IR frequencies (in KBr disc) of Eu2 ^{III} -bioprobe and ligand Lrespectively	5				
Table S2: Crystallographic data and structure refinement parameters of ligand L	6				
Figure S5: Absorption spectra of tta and ligand L along with excitation spectra of Eu_2^{III} -bioprobe 1	7				
Figure S6: Time-dependent variations in absorption spectra of Eu ₂ ^{III} -bioprobe 1	8				
Figure S7 : UV-Vis spectral variations in Eu ₂ ^{III} -bioprobe 1 in different solvents	8				
Figure S8: Steady-state luminescence spectra of the Eu ₂ ^{III} -bioprobe 1	9				
Figure S9: Time-resolved luminescence spectral variations of Eu2 ^{III} -bioprobe 1 in the presence of different solvents	10				
Table S3: Luminescence decay lifetime (τ) & rate constant (k) of the Eu2 ^{III} -bioprobe 1 in the different solvent system	10				
Figure 10. (a) Absorption spectral traces of bridging ligand L with gradually increasing concentration of [CT-DNA] (b) Fluorescence emission spectral traces of EB-bound CT-DNA	11				
Figure 11. (a) The effect of the addition of bridging ligand L in BSA solution (b) Modified Stern-Volmer plot of log $[(I_0 - I)/I]$ vs. log ligand L (c, d) Emission profile of synchronous emission spectra of BSA showing the quenching of emission after gradual addition of ligand L with $\Delta \lambda = 15$ nm and with $\Delta \lambda = 60$ nm	12				

Figure S1: ¹H NMR (500 MHz, Chloroform-*d*) spectra of [μ-pz(tpy)₂] (L).

Figure S2: ¹³C NMR spectra (101 MHz, Chloroform-*d*) spectra of [μ -pz(tpy)₂] (L).

Figure S3: ESI-MS spectra of $[\mu$ -pz(tpy)₂] (**L**) showing their theoretical and experimental pattern.

Figure S4: FT-IR spectra of Eu_2^{III} -bioprobe (1) and $[\mu$ -pz(tpy)₂] (L) were recorded in solid-state.

Table S1: Selected FT-IR frequencies (KBr disc) of 1 and bridging ligand L							
(v in cm-1)	[1]	[ligand L]					
Eu-N	519	-					
Eu-O	457	-					
C-N	1183	1265					
C=N	1428	1584					
C=0	1611	-					
C-F	1140	-					

Parameter	[µ-pz(tpy)2] ligand (L)			
Empirical formula	C48H40N8			
Formula weight	728.88			
Crystal system	Monoclinic			
Space group	P21/c			
aÅ	15.167(8)			
b Å	8.833(5)			
сÅ	15.473(10)			
α (deg)	90.00			
β (deg)	118.39(3)			
$\gamma(\text{deg})$	90.00			
Volume Å ³	1823.6(19)			
Ζ	2			
$D_x(Mg m^{-3})$	1.327			
μ (mm ⁻¹)	0.080			
F(000)	768.0			
T(K)	100(2)			
θ range for data	2.7((+, 20.07))			
collection(deg)	2.700 10 28.874			
	$-20 \le h \le 20$,			
Limiting indices	$-11 \le k \le 11$,			
-	$-20 \le l \le 20$			
Reflections collected	4511			
Unique reflections	3180			
R(int)	0.0573			
$T_{\rm max}/T_{\rm min}$	0.746/0.690			
Data/restraint/param eter	3180/0/253			
GOF on F ²	1.033			
$R_{1^{a}}$ and $wR_{2^{b}}[I > 2\sigma(I)]$	0.0552 and 0.1321			
R_1 and wR_2 (all data)	0.0877 and 0.1550			
Largest diff. peak and hole (e.A ⁻³)	0.33 and -0.29			
CCDC deposition number	2129638			
$a R_1 = \Sigma F_0 - F_C / \Sigma F_0 $				
^b wR ₂ = { $\sum [w(F_0^2 - F_c^2)]$	$\sum[w(F_{0}^{2})^{2}]^{1/2}$			

Table S2. Selected crystallographic data and structure refinement parameters of [μ-pz(tpy)₂] (L) ligand.

Figure S5: Absorption spectra of the bridging ligand L and tta along with the excitation spectra of Eu₂^{III}-bioprobe (**1**) in DMF. (T= 298K, [**1**] = 4 μ M, [tta] = 20 μ M, [ligand L] = 20 μ M. Ex. and Em. slit = 5×5 nm)

Figure S6: Time-dependent variations in absorption spectral of Eu₂^{III}-bioprobe (1) in DMF at 298 K for 4 h to access the stability of the respective complex in the solution-state. [1] = 20 μ M.

Figure S7: Solvent screening of Eu₂^{III} -bioprobe (**1**) in different solvents system using UV-Vis spectral study. (T = 298 K, [**1**] = 10 μ M).

Figure S8: Steady state luminescence spectra of Eu₂^{III} -bioprobe **1** in DMF. (T= 298 K, λ_{ex} = 340 nm, **[1]** = 4 μ M, Ex. and Em. slit = 5×5 nm).

Figure S9: Time-resolved luminescence spectral variations of Eu₂^{III} -bioprobe (**1**) in the presence of different solvents showing the major changes in the spectral form (T= 298 K, λ ex = 340 nm, [**1**] = 8 μ M, delay time = 0.2 (ms), and gate time = 0.2 (ms), Ex. and Em. slit= 2.5×5.0 respectively).

Table S3: Luminescence decay lifetime & rate constant of the complex in respective solvent								
system (T= 298K, λex = 340 nm, [1] = 8 μ M, delay time = 0.2 (ms), Ex. and Em. slit= 2.5×2.5								
respectively)								
Parameters	DMF	DMSO	МеОН	ACN	CHCl ₃	EtOAc	THF	Acetone
τ (ms)	0 502	0 586	0 399	0517	0519	0 294	0 249	0.417
<i>i</i> (ms)	0.502	0.500	0.577	0.517	0.517	0.291	0.217	0.117
к (s ⁻¹)	2.0	1.7	2.5	1.9	1.9	3.4	3.4	2.4

Figure S10. (a) Absorption spectral traces of $[\mu$ -pz(tpy)₂] (**L**) with gradually increasing of [CT-DNA] in 5.0 mM Tris buffer (pH 7.2). Inset: $\Delta \lambda_{af} / \Delta \lambda_{bf}$ vs. [DNA] plot for ligand **L** (b) Fluorescence emission spectral traces of EB-bound CT-DNA with increasing concentration of ligand **L** in 5 mM Tris-buffer at λ_{ex} = 546 nm, λ em = 603 nm, [EB] = 55 μ M. Inset: plot shows the relative emission of I/I₀ vs. [μ -pz(tpy)₂] (**L**).

Figure S11. (**a**) The effect of the addition of [ligand **L**] in BSA solution in 5 mM Tris buffer (pH 7.2) at 298 K. The inset plot the plot of I_0/I vs. [Ligand **L**], $\lambda ex = 295$ nm, $\lambda em = 345$ nm, [BSA] = 2 μ M. (**b**). Modified Stern-Volmer plot of log [($I_0 - I$)/I] vs. log [Ligand **L**] for determining the binding constant (*K*), quenching rate constant (k_q), and the number of binding sites (n) for BSA to the [ligand **L**] interaction. Emission profile of synchronous emission spectra of BSA showing the quenching of emission after gradual addition of [ligand **L**] (**c**) with $\Delta\lambda = 15$ nm and (**d**) with $\Delta\lambda = 60$ nm in Tris–HCl buffer (pH 7.2) at 298 K.