Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Bi³⁺ and Sm³⁺ co-doped Cs₂AgInCl₆ perovskite microcrystals

with co-enhancement of fluorescence emission

Zhihui Rao^a, Zhilin Li^a, Xiujian Zhao^a, and Xiao Gong*^a

a. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China. E-mail: xgong@whut.edu.cn

Sample Category	Precursor		Product (ICP-MS)	
	Sm ³⁺	Bi ³⁺	Sm ³⁺	Bi ³⁺
Cs ₂ AgInCl ₆ : Sm	20%	0%	0.61%	0%
Cs ₂ AgBiCl ₆ : Bi	0%	20%	0%	18.9%
Cs ₂ AgInCl ₆ : Bi-Sm	20%	20%	0.21%	20.7%

Table S1. Element content measured by ICP-MS. The molar concentration of $Bi^{3+} = 100\%[Bi]/[In]$; and the molar concentration of $Sm^{3+} = 100\%[Sm]/[In]$.

Figure S1. The PXRD patterns of $Cs_2AgInCl_6$: Bi, $Cs_2AgInCl_6$: Sm and $Cs_2AgBiCl_6$: Bi-Sm compared to the simulated PXRD patterns without doping.

Figure S2. XPS spectrum of Cs₂AgInCl₆: Bi-Sm microcrystals.

Figure S3. SEM images of the undoped, Cs₂AgInCl₆: Sm and Cs₂AgInCl₆: Bi-Sm microcrystals.

Figure S4. Tauc plot of diffuse absorption measurements of $Cs_2AgInCl_6$, $Cs_2AgInCl_6$: Bi and $Cs_2AgBiCl_6$: Bi-Sm microcrystals.

Figure S5. PL comparison spectra of $Cs_2AgInCl_6:0.2Bi-0.2Sm$ and $Cs_2AgInCl_6:0.2Bi$ excited at 370 nm. Intuitively, the 567 nm and 600 nm peaks arise after doping Sm³⁺ ions.

Figure S6. PL comparison spectra of $Cs_2AgInCl_6:0.2Bi-0.2Sm$ and $Cs_2AgInCl_6:0.2Sm$ excited at 370 nm. After co-doping Bi^{3+} , the emission peaks (567 nm and 600 nm) belonging to Sm^{3+} can still be observed, although the significant increase of PL intensity. Figure S5-S6 confirm that the 567 nm and 600 nm PL peaks arise from electronic transition of Sm^{3+} dopants.

Figure S7. Photographs of Bi/Sm MCs under visible light and UV light (365 nm) excitation.

Figure S8. PLQY of Cs₂AgInCl₆: Bi MCs with average 12.6%.

Figure S9. PLQY of Cs₂AgInCl₆: Bi-Sm MCs with average 13.4%.

Figure S10. EDS spectrum recorded from the Cs₂AgInCl₆: Bi-Sm sample shows the existence of Bi, Sm elemental signals.

Figure S11. PLE spectra of $Cs_2AgInCl_6$: Bi-Sm, $Cs_2AgInCl_6$: Bi and $Cs_2AgInCl_6$: Sm samples obtained by monitoring emitting wavelength at 600 nm, and normalized to [0,100].