Supplementary Information

Thermochromic properties of acridine heterocyclic derivatives with

donor-acceptor configuration

Shuzhe Li¹, Tong Sun³, Yixiao Niu², Yuhe Tian¹, Limin Yan^{1,*}, Wei Shi^{2,*}, Xuyong Yang², Bin Wei^{1,2}

¹ Microelectronic R&D Center, School of Mechanical & Electronic Engineering and Automation, Shanghai University, Shanghai, 200072, China

² School of Mechatronic Engineering and Automation, Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, 200072, China

³ School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, China

*Corresponding author: Limin Yan, Wei Shi

E-mail address: yanlm@shu.edu.cn; shiwei@shu.edu.cn

Contents

Fig. S1. PL spectra of thermally evaporated DpAn-InAc film and DpAn-InAc toluene solution (tested at 77 K), and UV-Visible absorption spectra (Abs.) of DpAn-InAc toluene solution tested at room temperature.

Fig. S2. PL spectra of thermally evaporated DpAn-BzAc and DpAn-BzAc toluene solution (tested at 77 K), and UV-Visible absorption spectra (Abs.) of toluene solution tested at room temperature (RT) and 77 K.

Fig. S3. Transient decay curves of DpAn-InAc and DpAn-BzAc films at room temperature. Fig. S4. Characteristics of DpAn-InAc film dissolved in para-xylene. (a) PL spectra, (b) transmittance, and (c–e) AFM images ($4 \times 4 \mu m$) in pristine and annealed states.

Fig. S5. Characteristics of DpAn-BzAc film. (a–c) PL spectra, (d–f) transmittance, and (g-i) AFM images (4×4 µm) in pristine and annealed states. The solvent is (a, d, g) toluene, (b, e, h) chloroform, and (c, f, i) acetonitrile.

Table S1. Parameters of DpAn-InAc and DpAn-BzAc.

Fig. S1. PL spectra of thermally evaporated DpAn-InAc film and DpAn-InAc toluene solution (tested at 77 K), and UV-Visible absorption spectra (Abs.) of DpAn-InAc toluene solution tested at room temperature.

Fig. S2. PL spectra of thermally evaporated DpAn-BzAc and DpAn-BzAc toluene solution (tested at 77 K), and UV-Visible absorption spectra (Abs.) of toluene solution tested at room temperature (RT) and 77 K.

Fig. S3. Transient decay curves of DpAn-InAc and DpAn-BzAc films at room temperature.

Fig. S4. Characteristics of DpAn-InAc film dissolved in para-xylene. (a) PL spectra, (b) transmittance, and (c–e) AFM images ($4 \times 4 \mu m$) in pristine and annealed state.

Fig. S5. Characteristics of DpAn-BzAc film. (a–c) PL spectra, (d–f) transmittance, and (g–i) AFM images (4×4 μ m) in pristine and annealed state. The solvent is (a, d, g) toluene, (b, e, h) chloroform, and (c, f, i) acetonitrile.

Materials	HOMO/LUMO (eV)	E _g (eV)	$\Delta E_{\rm st}$ (eV)	S ₁ (eV)	T ₁ (eV)	$T_{\rm g}/T_{\rm d}/T_{\rm m}$ (°C)
DpAn-InAc	-4.72/-1.98	2.74	0.39	3.47	3.08	132/330/250
DpAn-BzAc	-5.04/-1.87	3.17	0.40	3.48	3.08	118/370/249

 Table S1. Parameters of DpAn-InAc and DpAn-BzAc