Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

FeMo-N nanosheet arrays supported on nickel foam for efficient

electrocatalytic reduction of N_2 to NH_3 at ambient condition

Kun Jiang, Kai Li, Shuirong Li, Yan Li, Tao Li, Yun-Quan Liu*, Duo Wang, and Yueyuan Ye

College of Energy, Xiamen University, Xiamen 361102, China.

*Corresponding author.

E-mail address: yq_liu@xmu.edu.cn (Yun-Quan Liu)

Figure. S1 SEM images for NF and for Fe_mMo_n -N at other molar ratios.

Figure. S2 XRD patterns of (a) Fe_mMo_n and (b) Fe_mMo_n-N.

Figure. S3 High-resolution XPS spectra of O 1s for Fe_mMo_n-N .

Figure. S4 LSV curves of Fe_1Mo_1 -N for NRR in N_2 - (red line) and Ar- (black line) saturated electrolytes with a scan rate of 5 mV s⁻¹.

Figure. S5 (a) UV-Vis spectra of indophenol assays with NH₄⁺ concentrations after incubated for 2 h at room temperature. (b) Calibration curve used for calculation of NH₄⁺ concentrations.

Figure. S6 (a) UV-Vis adsorption spectra of various N₂H₄ concentrations after incubated for 10 min at room temperature. (b) Calibration curve used for calculation of N₂H₄ concentrations.

Figure. S7 NH_3 yield rates and FEs of different molar ratios of Fe_mMo_n-N in 0.05 M H_2SO_4 at different potentials.

Figure. S8 (a) nanostructure image; (b) element mapping; (c) element spectrum; (d) element content of SEM of Fe₁Mo₁-N after 10 h chronoamperometry test.

Figure. S9 XPS spectra in N 1s region for Fe_1Mo_1 -N after 10 h chronoamperometry in Arsaturated 0.05 M H_2SO_4 electrolyte.

Sample	Mo ⁴⁺ /Mo ⁶⁺	Fe ²⁺ /Fe ³⁺	N atomic %	N atomic of M-N %
Fe ₁ Mo ₀ -N	/	0.97	1.83	/
Fe ₂ Mo ₁ -N	0.99	1.00	19.51	10.77
Fe ₁ Mo ₁ -N	0.96	1.00	32.14	18.52
Fe ₁ Mo ₂ -N	1.09	1.00	29.04	16.66
Fe ₀ Mo ₁ -N	1.22	/	26.11	14.67

Table. S1. Elemental atom ratio of Fe_mMo_n -N determined by XPS peak area.

Table S2. Comparison of the NH_3 yield rate and FE of Fe_1Mo_1 -N with other reported NRR electrocatalysts under ambient atmosphere.

Catalyst	Electrolyte	NH3 yield/µg mg ⁻¹ mg. h ⁻¹	FE/%	Reference
Fe ₁ Mo ₁ -N	0.05 M H ₂ SO ₄	46.64	1.43	This work
FeTPPC1	0.1 M Na ₂ SO ₄	18.28	16.76	$[1]^1$
BCN	0.05M Na ₂ SO ₄	41.9	9.87	$[2]^2$
P-TiO ₂	0.1 M LiClO ₄	23.05	12.26	[3] ³
PdPb/C	0.1 M HCl	37.68	5.79	[4] ⁴
Ru-NC	0.1 KOH	16.68	14.23	[5] ⁵
Fe-(O-C ₂) ₄	0.1 KOH	32.1	29.3	[6] ⁶
Fe/Mo ₂ C	0.5 M Na ₂ SO ₄	~37	20.1	[7] ⁷
Mo-FeS ₂	0.1 KOH	26.15	14.41	[8] ⁸
NiFe-NF	0.1 M Na ₂ SO ₄	16.89	12.50	[9] ⁹
Mo ₂ CTX	0.5 M K ₂ SO ₄	40.57	25.77	[10] ¹⁰
CN/C	$2 \text{ M H}_2 \text{SO}_4$	2.9	62.1	[11]11
Mo-Mo ₂ C/NCNTs	0.005 M H ₂ SO ₄	16.1	7.1	[12] ¹²
Cu ₉ S ₅	0.5 M Na ₂ SO ₄	10.8	35	[13] ¹³
CaCoO _x	0.05 M Na ₂ SO ₄	16.25	20.51	[14] ¹⁴
β-FeOOH	0.5 M LiClO ₄	42.38	9.02	[15] ¹⁵

Notes and References

- X. X. Yang, S. Sun, L. Meng, K. Li, S. Mukherjee, X. Y. Chen, J. Q. Lv, S. Liang, H. Y. Zang,
 L. K. Yan and G. Wu, *Applied Catalysis B-Environmental*, 2021, 285, 119794.
- B. Chang, L. L. Li, D. Shi, H. H. Jiang, Z. Z. Ai, S. Z. Wang, Y. L. Shao, J. X. Shen, Y. Z. Wu,
 Y. L. Li and X. P. Hao, *Applied Catalysis B-Environmental*, 2021, 283, 119622.
- 3. P. Zhao, L. Zhang, J. Song, S. Wen and Z. Cheng, *Applied Surface Science*, 2020, **523**, 146517.
- H. Zhao, D. Zhang, Z. C. Wang, Y. Han, X. M. Sun, H. D. Li, X. K. Wu, Y. Pan, Y. N. Qin, S. Y. Lin, Z. K. Xu, J. P. Lai and L. Wang, *Applied Catalysis B-Environmental*, 2020, 265, 118411.
- Z. Q. Zhang, K. D. Yao, L. C. Cong, Z. C. Yu, L. N. Qu and W. M. Huang, *Catalysis Science & Technology*, 2020, 10, 1336-1342.
- S. B. Zhang, M. Jin, T. F. Shi, M. M. Han, Q. Sun, Y. Lin, Z. H. Ding, L. R. Zheng, G. Z. Wang,
 Y. X. Zhang, H. M. Zhang and H. J. Zhao, *Angewandte Chemie-International Edition*, 2020,
 59, 13423-13429.
- T. T. Wang, Z. K. Kou, J. Zhang, H. D. Wang, Y. J. Zeng, S. R. Wei and H. Zhang, *Chemical Engineering Journal*, 2021, 417, 127924.
- H. B. Wang, J. Q. Wang, R. Zhang, C. Q. Cheng, K. W. Qu, Y. J. Yang, J. Mao, H. Liu, M. Du,
 C. K. Dong and X. W. Du, *Acs Catalysis*, 2020, **10**, 4914-4921.
- Y. Sun, T. Jiang, J. Duan, L. Jiang, X. Hu, H. Zhao, J. Zhu, S. Chen and X. Wang, ACS Catalysis, 2020, 10, 11371-11379.
- W. Peng, M. Luo, X. D. Xu, K. Jiang, M. Peng, D. C. Chen, T. S. Chan and Y. W. Tan, Advanced Energy Materials, 2020, 10, 2001364.
- G. M. Peng, J. W. Wu, M. Z. Wang, J. Niklas, H. Zhou and C. Liu, *Nano Lett*, 2020, 20, 2879-2885.
- Y. Ma, T. Yang, H. Zou, W. Zang, Z. Kou, L. Mao, Y. Feng, L. Shen, S. J. Pennycook, L. Duan,
 X. Li and J. Wang, *Adv Mater*, 2020, **32**, 2002177.
- 13. H. S. Kim, J. Choi, J. Kong, H. Kim, S. J. Yoo and H. S. Park, Acs Catalysis, 2021, 11, 435-445.
- X. Y. Chen, K. Li, X. X. Yang, J. Q. Lv, S. Sun, S. Q. Li, D. M. Cheng, B. Li, Y. G. Li and H. Y. Zang, *Nano Research*, 2021, 14, 501-506.
- 15. X. Zhu, Z. Liu, H. Wang, R. Zhao, H. Chen, T. Wang, F. Wang, Y. Luo, Y. Wu and X. Sun,

Chem Commun (Camb), 2019, 55, 3987-3990.