Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Catalytic asymmetric construction of dispirotriheterocyclic structures through [3+2] cycloadditions of 4-amino pyrazolone-based azomethine ylides

Yue Huang, Xiaoze Bao, Xingfu Wei, Jianfang Zhang, Shah Nawaz, Jingping Qu and Baomin Wang*

State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China bmwang@dlut.edu.cn

Contents:

1.	General information	1
2.	Experimental sections	1
3.	X-ray crystal structure of 4ad	67

1. General information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. Column chromatography was performed on silica gel (200~300 mesh). Enantiomeric excesses (*ee*) were determined by HPLC using corresponding commercial chiral columns as stated at 30 °C with UV detector at 254 nm. Optical rotations were reported as follows: $[a]_D^T$ (c g/100 mL, solvent). All ¹H NMR and ¹⁹F NMR spectra were recorded on a Bruker Avance II 400 MHz and Bruker Avance III 471 MHz respectively, ¹³C NMR spectra were recorded on a Bruker Avance III 101 MHz or Bruker Avance III 126 MHz with chemical shifts reported as ppm (in CDCl₃, TMS as an internal standard). Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad singlet, dd = double doublet, coupling constants in Hz, integration). HRMS (ESI) was obtained with an HRMS/MS instrument (LTQ Orbitrap XL TM). The absolute configuration of **4ad** was assigned by the X-ray analysis.

Starting materials: All the aldehydes were commercially obtained and recrystallized or distilled prior to use. (1) 4-Amino pyrazolones were prepared following the reported procedures: 5 X. Bao, S. Wei, X. Qian, J. Qu, B. Wang, L. Zou and G. Ge, *Org. Lett.*, 2018, **20**, 3394. (2) Methyleneindolinones were synthesized according to following literature procedures: (a) K. Suman, L. Srinu and S. Thennarasu, *Org. Lett.*, 2014, **16**, 3732; (b) A. Huang, J. J. Kodanko and L. E. Overman, *J. Am. Chem. Soc.*, **2004**, *126*, 14043.

2. Experimental sections

General procedure for the synthesis of 4

In a reaction tube, 4-amino pyrazolone 1 (0.24 mmol), methyleneindolinone 3 (0.2 mmol), catalyst (0.02 mmol) and 3 Å MS (200 mg) were added into toluene (2 mL). Then aldehyde 2 (0.24 mmol) was added and the reaction solution was stirred at 25 °C. After the reaction was complete (monitored by TLC), the crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/20 to 1/4) on silica gel to give the product 4.

Table 1: Optimization of reaction conditions. ^a BPA=chiral phosphoric acid.

BPA-1 Ar = 2,4,6- $(i-Pr)_3-C_6H_2$ **BPA-2** Ar = 2-naphthyl **BPA-3** Ar = Ph **BPA-4** Ar = 3-Ph-C_6H_4 **BPA-5** Ar = SiPh_3 **BPA-6** Ar = 9-phenanthryl **BPA-7** Ar = 9-anthryl

entry	Cat.	Additives	Solvent	t[h]	Yield[%] ^b	dr ^c	ee[%] ^d
1	BPA-1	3 Å	DCM	59	74	>20:1	35
2	BPA-2	3 Å	DCM	59	94	>20:1	65
3	BPA-3	3 Å	DCM	59	53	>20:1	25
4	BPA-4	3 Å	DCM	59	70	>20:1	25
5	BPA-5	3 Å	DCM	59	64	>20:1	0
6	BPA-6	3 Å	DCM	59	83	>20:1	93
7	BPA-7	3 Å	DCM	59	65	>20:1	90
8	BPA-6	3 Å	CHCl ₃	43	78	>20:1	78
9	BPA-6	3 Å	THF	13	73	>20:1	40
10	BPA-6	3 Å	Et ₂ O	13	85	>20:1	76
11	BPA-6	3 Å	Tol	24	85	>20:1	96
12^e	BPA-6	3 Å	Tol	67	96	>20:1	95
13 ^e	BPA-6	4 Å	Tol	60	88	>20:1	95
14 ^e	BPA-6	5 Å	Tol	36	85	>20:1	96
15^e	BPA-6	MgSO ₄	Tol	36	82	>20:1	95
16 ^e	BPA-6	-	Tol	84	72	>20:1	95
$17^{e,f}$	BPA-6	3 Å	Tol	60	86	>20:1	95
$18^{e,f,g}$	BPA-6	3 Å	Tol	60	97	>20:1	95

^aThe reaction was conducted with **1a** (0.1 mmol), **2a** (0.12 mmol), **3a** (0.12 mmol) and **cat.** (0.01 mmol), MS (100 mg) in solvent (1.0 mL) at room temperature under argon. ^bIsolated yield. ^cDetected by ¹HNMR of the crude product. ^dDetected by chiral HPLC analysis. ^eWithout Na₂CO₃ ^fNo protection. ^gA the ratio of **1a/2a/3a** was 1.2/1.2/1.

Gram-scale reaction

In a reaction tube, 4-amino pyrazolone **1a** (0.264 mmol), **3a** (0.22 mmol), **BPA-6** (0.022 mmol) and 3 Å MS (220 mg) were added into toluene (2.2 mL). Then aldehyde **2a** (0.264 mmol) was added and the reaction solution was stirred at 25 °C. After the reaction was complete (monitored by TLC), the crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/20 to 1/4) on silica gel to give the product **4aa** with 81% yield, >20:1 dr and 95% ee.

Procedure for the Synthesis of 5

A reaction tube was charged with **4aa** (0.2 mmol) and dioxane (2 mL), then DDQ (0.6 mmol) was added. The reaction was stirred at room temperature until it was complete (monitored by TLC), then the crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/10) on silica gel to give the product **5** as a white solid.

Copies of ¹H NMR and ¹³C NMR spectra

4aa

3H), 2.68 (s, 1H), 0.49 (t, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.43, 175.08, 167.67, 155.14, 143.88, 138.18, 136.45, 130.73, 129.70, 129.59, 129.00, 128.90, 128.65, 128.16, 127.92, 127.64, 126.71, 125.67, 125.32, 123.43, 119.28, 107.42, 70.87, 69.21, 60.85, 60.41, 58.44, 26.02, 13.17; HRMS (ESI) m/z Calcd. for C₃₅H₃₁N₄O₄⁺ ([M+H]⁺) 571.2340, Found 571.2323; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 9.9 min, t_{minor} = 18.0 min).

#	Time	Area	Height	Width	Area%	Symmetry
1	9.896	15444.4	658.2	0.3658	97.894	0.829
2	18.002	332.2	7.7	0.5161	2.106	0.805

4ab

Prepared according to the procedure within 72 h as White solid (93.0 mg, 79% yield, dr > 20:1). mp 110.0 – 110.5 °C; $[\alpha]_D^{18}$ = -341.31 (*c* 0.49, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, *J* = 7.6 Hz, 2H), 8.16 – 8.15 (m, 3H), 7.82 – 7.91 (m, 1H), 7.70 – 7.50 (m, 2H), 7.54 – 7.43 (m, 3H), 7.29 – 7.09 (m, 5H), 6.74 - 6.82 (m, 1H), 6.69 (d, *J* = 7.6 Hz, 1H), 6.28 (d, *J* = 3.8 Hz, 1H), 4.73 (s, 1H), 3.46 - 3.66 (m, 2H), 2.87 (s, 3H), 2.60 (d, *J* = 3.8 Hz, 1H), 0.48 (t, *J* = 7.1 Hz, 3H); ¹⁹F NMR (470

MHz, CDCl₃) δ -116.57; ¹³C NMR (101 MHz, CDCl₃) δ 177.42, 174.97, 167.51, 154.87, 143.74, 138.12, 130.73, 129.73 (J = 3.6 Hz), 129.53, 129.42 (J = 3.8 Hz), 129.41, 128.99, 128.92, 128.49, 127.54, 125.86, 125.34, 123.87, 123.84, 123.71, 123.42, 119.27, 114.57 (J = 21.5 Hz), 107.26, 70.77, 62.03, 60.89, 59.87, 58.88, 26.18, 13.12; HRMS (ESI) m/z Calcd. for C₃₅H₃₀FN₄O₄⁺ ([M+H]⁺) 589.2246, Found 589.2234; Enantiomeric excess was determined to be 90% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 9.2 min, *t*_{minor} = 14.0 min).

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

Peak RetTime Type Width Height Area Area [mAU*s] 응 # [min] [min] [mAU] ----| 0.3749 4685.85059 193.23424 50.2373 1 9.270 BB 0.5753 4641.58154 2 14.005 BB 126.73827 49.7627

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	9.210	VP	0.3891	1.96098e4	791.26025	95.0104
2	14.025	MM	0.5644	1029.83936	30.41260	4.9896

4ac

Prepared according to the procedure within 72 h as White solid (125.7 mg, 97% yield, dr > 20:1). mp 133.3 – 134.0 °C; $[\alpha]_D^{17}$ = -285.85 (*c* 0.83, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, *J* = 7.5 Hz, 2H), 8.21 – 8.00 (m, 4H), 7.56 – 7.65 (m, 2H), 7.55 – 7.42 (m, 3H), 7.40 – 7.20 (m, 4H), 7.15 – 7.03 (m, 2H), 6.67 (d, *J* = 7.7 Hz, 1H), 6.44 (d, *J* = 1.8 Hz, 1H), 4.77 (s, 1H), 3.73 – 3.42 (m, 2H), 2.87 (s, 3H), 2.52 (d, *J* = 2.2 Hz, 1H), 0.47 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.21,

174.95, 167.54, 154.74, 144.00, 138.13, 135.86, 132.50, 131.58, 130.72, 129.57, 129.54, 129.15, 128.99, 128.93, 128.68, 127.53, 127.00, 126.92, 125.35, 123.58, 123.38, 119.31, 107.49, 70.62, 66.31, 60.88, 60.06, 58.76, 26.26, 13.14; HRMS (ESI) m/z Calcd. for $C_{35}H_{30}BrN_4O_4^+$ ([M+H]⁺) 649.1445, Found 649.1436; Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 6.0 min, t_{minor} = 7.3 min).

S9

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	5.982	VV	0.3031	1.87300e4	962.18994	98.4062
2	7.253	VB	0.3152	303.34732	14.31570	1.5938

4ad

CI

Ph-

ΟͺΗΝ

Ph

4ad

Prepared according to the procedure within 84 h as White solid (108.7 mg, 90% yield, dr > 20:1). mp 143.8 – 144.5 °C; $[\alpha]_D^{19} = -402.59$ (*c* 0.42, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.68 – 8.45 (m, 2H), 8.29 – 7.87 (m, 3H), 7.64 – 7.55 (m, 2H), 7.54 – 7.46 (m, 1H), 7.45 – 7.38 (m, 2H), 7.34 – 7.25 (m, 1H), 7.22 – 7.06 (m, 4H), 7.04 – 6.96 (m, 2H), 6.77 – 6.65 (m, 1H), 5.84 (d, *J* = 3.8 Hz, 1H), 4.66 (s, 1H), 3.56 (ddq, *J* = 43.0, 10.7, 7.1 Hz, 2H), 2.82 (s, 3H), 2.69 (d, *J* = 4.0 Hz, 1H), 0.47 (t, *J* = 7.1

Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.14, 175.06, 167.51, 154.98, 143.84, 138.91, 138.04, 133.81, 130.79, 129.47, 129.36, 129.25, 129.02, 128.93, 128.29, 127.61, 126.80, 125.61, 125.40, 124.86, 123.60, 119.25, 107.58, 70.83, 68.42, 60.92, 60.17, 58.50, 26.15, 13.16; HRMS (ESI) m/z Calcd. for C₃₅H₃₀ClN₄O₄ ([M+H]⁺) 605.1950, Found 605.1947; Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 11.6 min, *t*_{minor} = 20.4 min).

4ae

Prepared according to the procedure within 84 h as White solid (116.6 mg, 90% yield, dr > 20:1). mp 135.0 – 135.5 °C; $[\alpha]_D^{20} = -333.38$ (*c* 0.71, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, *J* = 7.5 Hz, 2H), 8.20 – 8.00 (m, 4H), 7.56 – 7.80 (m, 2H), 7.54 – 7.43 (m, 3H), 7.40 – 7.20 (m, 4H), 7.15 – 7.03 (m, 2H), 6.67 (d, *J* = 7.7 Hz, 1H), 6.44 (d, *J* = 1.8 Hz, 1H), 4.77 (s, 1H), 3.70 – 3.42 (m, 2H), 2.87 (s, 3H), 2.52 (d, *J* = 2.2 Hz, 1H), 0.47 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.21, 174.95, 167.54, 154.74, 144.00, 138.13, 135.86, 132.50, 131.58, 130.72, 129.57, 129.54,

129.15, 128.99, 128.93, 128.68, 127.53, 127.00, 126.92, 125.35, 123.58, 123.38, 119.31, 107.49, 70.62, 66.31, 60.88, 60.06, 58.76, 26.26, 13.14; HRMS (ESI) m/z Calcd. for $C_{35}H_{30}BrN_4O_4^+$ ([M+H]⁺) 649.1445, Found 649.1438; Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 13.8 min, t_{minor} = 17.1 min).

7.8.66
8.8.11
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
8.8.14
<p

4af

Prepared according to the procedure within 94 h as White solid (108.5 mg, 90% yield, dr > 20:1). mp 126.3 – 126.7 °C; $[\alpha]_D^{20} = -328.93$ (*c* 0.76, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, *J* = 7.6 Hz, 2H), 8.03 – 8.18 (m, 3H), 7.73 (dd, *J* = 7.7 Hz, 1H), 7.40 – 7.64 (m, 5H), 7.21 – 7.30(m, 2H), 7.14 (m, *J* = 7.5 Hz, 1H), 6.96 (d, *J* = 7.9 Hz, 1H), 6.70 (d, *J* = 7.7 Hz, 1H), 6.59 (d, *J* = 11.1 Hz, 1H), 6.24 (s, 1H), 4.72 (s, 1H), 3.67 – 3.42 (m, 2H), 2.90 (s, 3H), 2.59 (s, 1H), 2.26 (s, 3H), 0.48 (t, *J* = 7.1 Hz, 3H); ¹⁹F NMR (470 MHz, CDCl₃) δ

-117.64; ¹³C NMR (101 MHz, CDCl₃) δ 177.56, 175.01, 167.54, 159.22, 154.91, 143.77, 139.85, 138.15, 130.71, 129.54, 129.28 (J = 2.8 Hz), 128.97, 128.91, 128.43, 127.55,

125.85, 125.31, 124.64 (J = 2.6 Hz), 123.39, 119.27, 115.10 (J = 21.1 Hz), 107.22, 70.74, 62.07, 60.86, 59.83, 58.95, 26.23, 21.04, 13.11; HRMS (ESI) m/z Calcd. for $C_{36}H_{32}FN_4O_4^+$ ([M+H]⁺) 603.2402, Found 603.2390; Enantiomeric excess was determined to be 90 % (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 18.4 min, t_{minor} = 16.1 min).

8.67 8.8.10 8.8.12 8.8.12 8.8.10 8.8.10 8.8.10 8.8.10 7.7.7.7 7.7.

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.891	BV	0.8036	4817.09082	93.72789	49.8363
2	18.281	VB	1.0983	4848.74561	66.83953	50.1637

Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] 8 ---| 16.142 MM 0.7214 623.28943 14.39915 5.2316 1 2 18.448 MM 1.1794 1.12907e4 159.55942 94.7684

4ag

Prepared according to the procedure within 108 h as White solid (113.4 mg, 97% yield, dr > 20:1). mp 130.2 – 131.1 °C; $[\alpha]_D^{19} = -303.20 (c \ 0.44, CH_2Cl_2); {}^{1}H \ NMR \ (400 \ MHz, CDCl_3)$ $\delta \ 8.67 \ (d, J = 7.6 \ Hz, 2H), \ 8.08 \ (d, J = 7.7 \ Hz, 3H), \ 7.70 - 7.59 \ (m, 2H), \ 7.53 - 7.43 \ (m, 3H), \ 7.29 \ (dd, J = 7.5 \ Hz, 1H), \ 7.22 \ (d, J = 7.4 \ Hz, 1H), \ 7.15 \ (dd, J = 7.5 \ Hz, 1H), \ 7.07 \ (dd, J = 7.5 \ Hz, 1H), \ 6.78 \ (s, 1H), \ 6.68 \ (d, J = 7.7 \ Hz, 1H), \ 5.87 \ (s, 1H), \ 4.69$

(s, 1H), 3.70 - 3.45 (m, 2H), 2.79 (s, 3H), 2.57 (s, 1H), 2.19 (s, 3H), 0.49 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.44, 175.09, 167.73, 155.14, 143.93, 138.18,

137.31, 136.40, 130.70, 129.82, 129.59, 128.99, 128.88, 128.81, 128.62, 127.80, 127.65, 127.27, 125.64, 125.30, 123.68, 123.40, 119.28, 107.32, 70.85, 69.16, 60.84, 60.39, 58.48, 26.05, 21.44, 13.17; HRMS (ESI) m/z Calcd. for $C_{36}H_{33}N_4O_4^+$ ([M+H]⁺) 585.2496, Found 585.2506; Enantiomeric excess was determined to be 93% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 9.9 min, t_{minor} = 18.9 min).

4ah

Prepared according to the procedure within 96 h as White solid (114.5 mg, 98% yield, dr > 20:1). mp 126.3 – 127.0 °C; $[\alpha]_D^{20} = -281.98$ (*c* 1.09, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, *J* = 7.5 Hz, 2H), 8.12 – 8.05 (m, 3H), 7.60 – 7.50 (m, 2H), 7.45 (dd, *J* = 14.8, 7.3 Hz, 3H), 7.30 – 7.17 (m, 2H), 7.12 (dd, *J* = 7.5 Hz, 1H), 6.94 (q, *J* = 8.2 Hz, 4H), 6.65 (d, *J* = 7.7 Hz, 1H), 5.82 (s, 1H), 4.65 (s, 1H), 3.75 – 3.37 (m, 2H), 2.77 (s, 3H), 2.38 (s, 1H), 2.21 (s, 3H), 0.45 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.57, 175.08, 167.70, 155.13, 143.88, 138.23, 137.74, 133.52, 130.71, 129.84, 129.60, 129.02, 128.88, 128.62, 128.58, 127.64, 126.57, 125.67, 125.26, 123.40, 119.19, 107.39, 70.82, 68.99, 60.80, 60.37, 58.55, 26.07, 21.16, 13.18; HRMS (ESI) m/z Calcd. for C₃₆H₃₃N₄O₄⁺ ([M+H]⁺) 585.2496, Found 585.2487; Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 16.8 min, t_{minor} = 19.7 min).

4ai

Prepared according to the procedure within 84 h as White solid (91.2 mg, 76% yield, dr > 20:1). mp 122.2 – 123.5 °C; $[\alpha]_D^{19} = -221.5 (c 0.53, CH_2Cl_2);$ ¹H NMR (400 MHz, CDCl_3) δ 8.74 – 8.66 (m, 2H), 8.18 – 8.08 (m, 3H), 7.70 – 7.58 (m, 2H), 7.54 – 7.47 (m, 3H), 7.32 (td, J = 7.7, 0.9 Hz, 1H), 7.26 (dd, J = 7.4 Hz, 1H), 7.18 (td, J = 7.6, 0.7 Hz, 1H), 7.05 (d, J = 8.6 Hz, 2H), 6.69 – 6.78 (m, 3H), 5.89 (s, 1H), 4.72 (s, 1H), 3.75 (s, 3H), 3.71 – 3.50 (m, 2H), 2.85 (s, 3H), 2.60 (s, 1H), 0.51 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.61, 175.09, 167.73, 159.42, 155.15, 143.83, 138.19,

130.71, 129.78, 129.61, 128.99, 128.87, 128.58, 128.41, 127.98, 127.64, 125.62, 125.29, 123.39, 119.24, 113.26, 107.40, 70.77, 68.90, 60.82, 60.36, 58.39, 55.13, 26.12,

13.17; HRMS (ESI) m/z Calcd. for C₃₆H₃₃N₄O₅⁺ ([M+H]⁺) 601.2445, Found 601.2441; Enantiomeric excess was determined to be 81% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 29.4 min, t_{minor} = 25.4 min).

4aj

Prepared according to the procedure within 72 h as White solid (81.2 mg, 66% yield, dr > 20:1). mp 192.6 – 193.5 °C; $[\alpha]_D^{20} = -340.00$ (*c* 0.29, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.71 – 8.60 (m, 2H), 8.17 – 8.05 (m, 1H), 7.97 – 7.94 (m, 1H), 7.65 – 7.58 (m, 2H), 7.56 – 7.44 (m, 4H), 7.43 – 7.33 (m, 2H), 7.28 – 7.19 (m, 3H), 6.75 (d, *J* = 7.6 Hz, 1H), 6.05 (s, 1H), 4.72 (s, 1H), 3.67 – 3.49 (m, 2H), 2.82 (s, 3H), 0.50 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.93, 174.99, 167.25, 154.82, 147.96, 143.66, 139.18,

137.95, 132.73, 130.91, 129.33, 129.25, 129.03, 128.98, 127.53, 125.76, 125.51, 123.89, 123.17, 121.80, 119.30, 107.80, 70.90, 68.04, 61.04, 60.11, 58.58, 26.18, 13.14; HRMS (ESI) m/z Calcd. for $C_{35}H_{30}N_5O_6^+$ ([M+H]⁺) 616.2191, Found 616.2185;

Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 8.5 min, t_{minor} = 14.2 min).

Prepared according to the procedure within 94 h as White solid (107.0 mg, 87% yield, dr > 20:1). mp 144.2 – 144.9 °C; $[\alpha]_D^{17} = -376.20 (c 0.84, CH_2Cl_2);$ ¹H NMR (400 MHz, CDCl₃) δ 8.68 – 8.57 (m, 2H), 8.15 – 8.00 (m, 5H), 7.66 – 7.40 (m, 5H), 7.37 – 7.09 (m, 5H), 6.73 (d, J = 7.7 Hz, 1H), 6.01 (d, J = 3.3 Hz, 1H), 4.68 (s, 1H), 3.68 – 3.46 (m, 2H), 2.86 (d, J = 3.9 Hz, 1H), 2.82 (s, 3H), 0.47 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.88, 175.01, 167.20, 154.78, 147.77, 144.27, 143.75, 137.89, 130.90, 129.34, 129.21, 129.03, 128.96, 128.95, 127.57, 127.52, 125.68, 125.52, 123.77, 123.19, 119.26, 107.79, 70.93, 68.12, 61.05,

60.16, 58.67, 26.20, 13.13; HRMS (ESI) m/z Calcd. for $C_{35}H_{30}N_5O_6^+$ ([M+H]⁺) 616.2191, Found 616.2181; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 15.9 min, t_{minor} = 31.7 min).

4al

Prepared according to the procedure within 94 h as White solid (107.1 mg, 90% yield, dr > 20:1). mp 145.4 – 145.9 °C; $[\alpha]_D^{21} = -380.61$ (*c* 0.89, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.66 – 8.57 (m, 2H), 8.07 – 7.97 (m, 3H), 7.62 – 7.55 (m, 2H), 7.54 – 7.46 (m, 3H), 7.44 – 7.37 (m, 2H), 7.31 (td, *J* = 7.7, 1.0 Hz, 1H), 7.22 – 7.14 (m, 3H),

by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 14.9 min, t_{minor} = 20.6 min).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	15.002	VB	0.7993	9156.83984	179.46423	50.3280
2	20.483	BB	0.9240	9037.46973	154.14279	49.6720

4am

Prepared according to the procedure within 84 h as White solid (109.4 mg, 95% yield, dr > 20:1). mp 145.3 – 146.9 °C; $[\alpha]_D^{20} = -289.30$ (*c* 0.94, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, *J* = 7.4 Hz, 2H), 8.02 – 8.10 (m, 3H), 7.60 – 7.54 (m, 2H), 7.53 – 7.42 (m, 3H), 7.27 – 7.33 (m, 1H), 7.19 – 7.24 (m, 1H), 7.11 – 7.17 (m, 2H), 6.85 (dd, *J* = 4.9, 3.6 Hz, 1H), 6.66 – 6.76 (m, 2H), 6.15 (d, *J* = 3.7 Hz, 1H), 4.71 (s, 1H), 3.71 – 3.43 (m, 2H), 2.92 (s, 3H), 2.88 (d, *J* = 4.1 Hz, 2H) (s, 20.11) (s, 2

1H)., 0.48 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.22, 174.94, 167.49, 154.94, 144.04, 140.00, 138.09, 130.79, 129.47, 129.34, 129.00, 128.88, 128.78, 127.66, 126.50, 125.67, 125.38, 125.06, 124.45, 123.48, 119.28, 107.52, 70.69, 65.90, 60.90, 60.20, 58.45, 26.26, 13.15; HRMS (ESI) m/z Calcd. for C₃₃H₂₉N₄O₄S⁺ ([M+H]⁺) 577.1904, Found 577.1902; Enantiomeric excess was determined to be 96% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 12.6 min, *t*_{minor} = 32.9 min).

S30

Prepared according to the procedure within 72 h as White solid (119.1 mg, 96% yield, dr > 20:1). mp 126.0 – 126.9 °C; $[\alpha]_D^{19} = -364.95$ (c 0.43, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.84 - 8.68 (m, 2H), 8.26 - 8.06 (m, 3H), 7.60 -7.80 m, 5H), 7.58 – 7.45 (m, 4H), 7.44 – 7.38 (m, 2H), 7.29 – 7..36 (m, 1H), 7.17 – 7.28 (m, 3H), 6.66 (d, *J* = 7.6 Hz, 1H), 6.11 (s, 1H), 4.77 (s, 1H), 3.77 – 3.46 (m, 2H), 2.67 – 2.82 (m, 3H), 0.50 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.43, 175.13, 167.68, 155.15, 143.96, 138.16, 134.04,

133.28, 132.84, 130.77, 129.77, 129.60, 129.00, 128.93, 128.74, 128.26, 127.68, 127.55, 127.50, 125.91, 125.84, 125.72, 125.36, 124.65, 123.49, 119.33, 107.47, 70.92, 69.29, 60.89, 60.37, 58.69, 26.09, 13.16; HRMS (ESI) m/z Calcd. for C₃₉H₃₃N₄O₄⁺ ([M+H]⁺) 621.2496, Found 621.2494; Enantiomeric excess was determined to be 94% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, $t_{major} = 12.1 \text{ min}$, $t_{minor} = 30.6 \text{ min}$).

S33

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	12.078	BP	0.5721	2.09724e4	576.92859	97.0048
2	30.581	BP	1.0708	647.56854	7.32914	2.9952

4ao

Ph-

O, HN

Prepared according to the procedure within 96 h as White solid (80.7 mg, 70% yield, dr > 20:1). mp 105.6 – 105.2 °C; $[\alpha]_D^{20} = -128.36$ (c 0.40, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.1 Hz, 2H), 7.43 – 7.35 (m, 4H), 7.23 – 7.12 (m, 2H), 7.08 – 7.02 (m, 3H), 6.88 (dd, J = 7.8 Hz, 1H), 6.50 (d, J = 7.8 Hz, 1H), 6.39 (dd, J = 7.6 Hz, 1H), 4.27 (d, J = 9.0 Hz, 1H), 4.04 (t, J = 9.1 Hz, 1H), 3.71 – 3.53 (m, 2H), 3.11 (s, 3H), 2.40 - 2.28 (m, 1H), 2.03 (d, J = 11.4 Hz,

1H), 1.82 - 1.62 (m, 4H), 1.37 - 1.11 (m, 6H), 0.63 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.33, 172.30, 169.26, 157.88, 142.79, 137.34, 133.24, 129.04, 129.02, 128.81, 128.10, 127.58, 127.47, 125.48, 123.81, 121.89, 119.85, 106.97, 64.49, 63.69, 60.26, 52.09, 43.95, 32.03, 30.13, 26.69, 26.27, 25.97, 25.93, 13.54; HRMS (ESI) m/z Calcd. for C₃₅H₃₇N₄O₄⁺ ([M+H]⁺) 577.2809, Found 577.2811; Enantiomeric excess was determined to be 33% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 22.8 min, t_{minor} = 8.7 min).

7.847.7.727.772

4ba

Prepared according to the procedure within 84 h as White solid (114.7 mg, 95% yield, dr > 20:1). mp 138.9 – 139.5 °C; $[\alpha]_D^{19}$ = -276.16 (*c* 0.58, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, *J* = 7.4 Hz, 2H), 8.08 – 8.18 (m, 3H), 7.63 – 7.45 (m, 5H), 7.33 – 7.19 (m, 5H), 7.06 – 7.13 (m, 2H), 6.62 (d, *J* = 8.3 Hz, 1H), 5.89 (d, *J* = 3.8 Hz, 1H), 4.70 (s, 1H), 3.53 – 3.64(m, 2H), 2.76 (s, 3H), 2.62 (d, *J* = 3.9 Hz, 1H), 0.58 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 177.01, 174.80, 167.35, 154.97, 142.46, 138.09, 135.97, 131.46, 130.79, 129.53, 129.03, 128.93, 128.76, 128.71, 128.39, 128.00, 127.59, 126.73, 126.10, 125.41, 119.21, 108.41, 70.80, 69.15, 61.10, 60.46, 58.05, 26.13, 13.31; HRMS (ESI) m/z Calcd. for C₃₅H₃₀ClN₄O₄⁺ ([M+H]⁺) 605.1950, Found 605.1953; Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 7.0 min, *t*_{minor} = 14.9 min).

S37

4ca

Prepared according to the procedure within 84 h as White solid (103.7 mg, 80% yield, dr > 20:1). mp 134.0 – 134.6 °C; $[\alpha]_D^{18}$ = 254.18 (*c* 0.69, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, *J* = 7.4 Hz, 2H), 8.27 (d, *J* = 1.9 Hz, 1H), 8.11 (d, *J* = 7.8 Hz, 2H), 7.65 – 7.55 (m, 2H), 7.54 – 7.43 (m, 4H), 7.28 – 7.19 (m, 4H), 7.13 – 7.06 (m, 2H), 6.57 (d, *J* = 8.2 Hz, 1H), 5.88 (d, *J* = 4.0 Hz, 1H), 4.69 (s, 1H), 3.84 – 3.53 (m, 2H), 2.75 (s, 3H),

2.61 (d, J = 4.1 Hz, 1H), 0.59 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.91, 174.77, 167.34, 154.94, 142.93, 138.11, 135.96, 131.81, 131.66, 130.79, 129.54, 129.04, 128.93, 128.78, 128.39, 128.00, 127.58, 126.74, 125.40, 119.19, 116.05, 108.93, 70.79, 69.12, 61.13, 60.41, 58.04, 26.11, 13.33; HRMS (ESI) m/z Calcd. for C₃₅H₃₀BrN₄O₄⁺ ([M+H]⁺) 649.1445, Found 649.1444; Enantiomeric excess was determined to be 83% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 6.3 min, t_{minor} = 12.4 min).

S40

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	6.343	VV	0.3153	3.07090e4	1522.47791	91.4570
2	12.441	BB	0.5036	2868.52686	89.10049	8.5430

4da

Prepared according to the procedure within 96 h as White solid (97.2 mg, 81% yield, dr > 20:1). mp 129.3 – 130.7 °C; $[\alpha]_D^{15} = -289.96 (c \ 0.76, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 8.70 – 8.63 (d, J = 7.5 Hz, 2H), 8.15 – 8.07 (d, J = 7.8 Hz, 2H), 7.86 (d, J = 2.5 Hz, 1H), 7.62 – 7.55 (m, 2H), 7.53 – 7.43 (m, 3H), 7.24 – 7.14 (m, 4H), 7.13 – 7.05 (m, 2H), 6.84 (dd, J = 8.4, 2.5 Hz, 1H), 6.59 (d, J = 8.4 Hz, 1H), 5.88 (d, J = 4.1 Hz, 1H), 4.71 (s, 1H), 3.87 (s, 3H),

3.75 – 3.49 (m, 2H), 2.75 (s, 3H), 2.55 (d, J = 4.1 Hz, 1H), 0.54 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.12, 175.03, 167.63, 156.67, 155.06, 138.26, 137.44, 136.47, 131.00, 130.72, 129.58, 128.95, 128.90, 128.14, 127.90, 127.62, 126.70, 125.23, 119.14, 113.50, 112.55, 107.86, 70.84, 69.32, 60.87, 60.79, 58.38, 55.99, 26.11, 13.27; HRMS (ESI) m/z Calcd. for C₃₆H₃₃N₄O_{5⁺} ([M+H]⁺) 601.2445, Found 601.2439; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 8.1 min, t_{minor} = 12.3 min).

Peak #	[min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	8.118	BB	0.3290	1.29060e4	614.63336	49.9738	
2	12.354	BB	0.4955	1.29196e4	410.17297	50.0262	

Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] 응 ----- 1 472.31683 8.053 BP 0.3175 9614.10156 97.2807 1 8.76637 2 12.261 BB 0.4777 268.74646 2.7193

4ea

Prepared according to the procedure within 96 has White solid (97.0 mg, 83% yield, dr > 20:1). mp 129.0 – 129.6 °C; $[\alpha]_D^{14}$ = -318.26 (*c* 0.56, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.75 – 8.65 (m, 2H), 8.16 – 8.09 (m, 2H), 7.91 (s, 1H), 7.65 – 7.59 (m, 2H), 7.55 – 7.46 (m, 3H), 7.28 – 7.24 (m, 2H), 7.23 – 7.16 (m, 3H), 7.14 – 7.06 (m, 3H), 6.59 (d, *J* = 7.8 Hz, 1H), 5.93 (d, *J* = 3.8 Hz, 1H), 4.71 (s, 1H), 3.79 – 3.45 (m, 2H), 2.77 (s, 3H), 2.61 (d, *J* = 4.0 Hz, 1H), 2.44 (s, 3H), 0.51 (t, *J*

= 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.39, 175.07, 167.77, 155.17, 141.56, 138.21, 136.47, 132.93, 130.72, 129.64, 129.59, 128.99, 128.91, 128.88, 128.11, 127.88, 127.66, 126.69, 126.23, 125.30, 119.27, 107.21, 70.83, 69.18, 60.80, 60.51, 58.35, 26.04, 21.48, 13.18; HRMS (ESI) m/z Calcd. for C₃₆H₃₃N₄O₄⁺ ([M+H]⁺) 585.2496, Found 585.2489; Enantiomeric excess was determined to be 94% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 6.1 min, *t*_{minor} = 8.5 min).

4fa

Prepared according to the procedure within 72 h as White solid (104.5 mg, 94% yield, dr > 20:1). mp 214.6 – 215.6 °C; $[\alpha]_D^{20}$ = -261.28 (*c* 0.36, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 7.5 Hz, 2H), 8.12 – 8.05 (m, 3H), 7.62 – 7.55 (m, 2H), 7.54 – 7.44 (m, 3H), 7.25 – 7.07(m, 8H), 6.71 (d, *J* = 7.6 Hz, 1H), 5.98 (d, *J* = 3.5 Hz, 1H), 4.71 (s, 1H), 3.78 – 3.42 (m, 2H),

4 2.68 (d, J = 3.7 Hz, 1H), 1.26 (s, 1H), 0.51 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.88, 175.08, 167.61, 155.02, 140.83, 138.12, 136.37, 130.69, 130.10, 129.56, 128.99, 128.88, 128.64, 128.28, 128.08, 127.64, 127.04, 126.16, 125.37, 123.41, 119.33, 108.95, 70.73, 69.31, 60.97, 60.43, 58.82, 13.15; HRMS (ESI) m/z Calcd. for C₃₄H₂₉N₄O₄⁺ ([M+H]⁺) 557.2183, Found 557.2175; Enantiomeric excess was determined to be 73% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 20.2 min, t_{minor} = 9.6 min).

4ga

Prepared according to the procedure within 72 h as White solid (125.3 mg, 97% yield, dr > 20:1). mp 132.6 – 133.2 °C; $[\alpha]_D^{15}$ = 308.12 (*c* 0.52, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 7.6 Hz, 2H), 8.27 – 7.98 (m, 3H), 7.40 – 7.65 (m 5H), 7.34 – 7.22 (m, 6H), 7.06 – 7.17 (m, 5H), 6.62 – 6.43 (m, 3H), 6.03 (d, *J* = 3.2 Hz, 1H), 4.85 (dd, *J* = 31.6, 15.8 Hz, 2H), 4.31 (d, *J* = 15.9 Hz, 1H), 3.70 – 3.45 (m, 2H), 2.66 (d, *J* = 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 2.66 (d, *J* = 3.5 Hz, 1H), 4.85 (dd, *J* = 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 2.66 (d, *J* = 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 2.66 (d, *J* = 3.5 Hz, 1H), 4.85 (dd, *J* = 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 2.66 (d, *J* = 3.5 Hz, 1H), 4.85 (dd, *J* = 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 2.66 (d, *J* = 3.5 Hz, 1H), 4.85 (dd, *J* = 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 2.66 (d, *J* = 3.5 Hz, 1H), 4.85 (dd, *J* = 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 3.70 – 3.45 (m, 2H), 3.70 – 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 3.70 – 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 3.70 – 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 3.70 – 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 3.70 – 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 3.70 – 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 3.70 – 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 3.70 – 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 3.70 – 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 3.70 – 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 3.70 – 3.5 Hz, 1H), 3.70 – 3.45 (m, 2H), 3.70 – 3.5 Hz, 1H), 3.70 – 3.5 Hz, 1H), 3.70 – 3.85 Hz, 3.70 – 3.75 Hz, 3.70 – 3.75 Hz, 3.70 – 3.75 Hz, 3.75 H

1H), 0.44 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.74, 175.09, 167.65, 155.05, 143.12, 138.16, 136.38, 135.20, 130.76, 129.64, 129.61, 129.01, 128.94, 128.61, 128.56, 128.41, 128.32, 127.68, 127.56, 127.22, 126.65, 125.72, 125.37, 123.48, 119.32, 108.62, 70.73, 69.31, 60.90, 60.20, 59.38, 43.93, 13.12; HRMS (ESI)

m/z Calcd. for C₄₁H₃₅N₄O₄⁺ ([M+H]⁺) 647.2653, Found 647.2642; Enantiomeric excess was determined to be 87% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 8.6 min, t_{minor} = 20.2 min).

130 120 110 100 f1 (ppm) -10

4ha

1H), 0.50 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.13, 174.16, 167.81, 155.99, 143.81, 138.69, 138.30, 136.47, 131.89, 130.16, 129.82, 129.75, 129.05,

128.60, 128.56, 128.13, 127.90, 126.81, 126.18, 125.66, 125.19, 123.34, 118.99, 107.36, 71.99, 69.16, 60.86, 60.04, 57.83, 25.96, 22.91, 13.22; HRMS (ESI) m/z Calcd. for $C_{36}H_{33}N_4O_4^+$ ([M+H]⁺) 585.2496, Found 585.2485; Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 10.0 min, t_{minor} = 11.9 min).

4ia

Prepared according to the procedure within 96 h as White solid (99.3 mg, 85% yield, dr > 20:1). mp 123.2 – 124.3 °C; $[\alpha]_D^{17}$ = -239.93 (*c* 0.57, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 7.6 Hz, 2H), 8.12 (d, *J* = 7.7 Hz, 3H), 7.46 – 7.56 (m, 5H), 7.33 (dd, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 7.4 Hz, 1H), 7.19 (dd, *J* = 7.5 Hz, 1H), 7.11 (dd, *J* = 7.5 Hz, 1H), 7.03 (d, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 7.6 Hz, 1H), 6.82 (s, 1H), 6.72 (d, *J* = 7.7 Hz, 1H), 5.91 (s, 1H), 4.73 (s, 1H), 3.75 – 3.47 (m, 2H), 2.83 (s, 3H), 2.63 (d, *J* = 17.8 Hz, 1H), 2.23 (s, 3H), 0.53 (t, *J* = 7.1

Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.44, 175.09, 167.73, 155.14, 143.93, 138.18, 137.31, 136.40, 130.70, 129.82, 129.59, 128.99, 128.88, 128.81, 128.62,

127.80, 127.65, 127.27, 125.64, 125.30, 123.68, 123.40, 119.28, 107.32, 70.85, 69.16, 60.84, 60.39, 58.48, 26.05, 21.44, 13.17; HRMS (ESI) m/z Calcd. for $C_{36}H_{33}N_4O_4^+$ ([M+H]⁺) 585.2496, Found 585.2494; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 11.1 min, t_{minor} = 18.1 min).

4ja

Prepared according to the procedure within 84 h as White solid (96.5 mg, 82% yield, dr > 20:1). mp 128.5.0 – 129.2 °C; $[\alpha]_D^{18} = -328.99$ (*c* 0.75.9, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.76 – 8.66 (m, 2H), 8.13 – 8.02 (m, 3H), 7.50 – 7.44 (m, 2H), 7.35 – 7.26 (m, 3H), 7.25 (d, *J* = 7.4 Hz, 1H), 7.23 – 7.14 (m, 4H), 7.10 – 7.05 (m, 2H), 6.70 (d, *J* = 7.6 Hz, 1H), 5.93 (d, *J* = 7.4 Hz, 1H), 4.64 (s, 1H), 3.74 – 3.41 (m, 2H), 2.79 (s, 3H), 2.64 (t, *J* = 8.6 Hz, 1H), 0.49 (t, *J* = 7.1 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -108.68; ¹³C NMR (101 MHz, CDCl₃) δ 177.49, 174.89, 167.60, 154.37, 143.82, 138.05, 136.37, 129.96, 129.88, 129.58,

129.03, 128.71, 128.22, 127.94, 126.64, 125.80 (d, J = 3.2 Hz), 125.58, 125.36, 123.50, 119.18, 116.02 (d, J = 21.6 Hz), 107.50, 70.70, 69.13, 60.91, 60.31, 58.43, 26.03, 13.16; HRMS (ESI) m/z Calcd. for C₃₅H₃₀FN₄O₄⁺ ([M+H]⁺) 589.2246, Found 589.2228; Enantiomeric excess was determined to be 99%(determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, $t_{major} = 8.4$ min $t_{minor} = 18.7$ min).

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.422	BP	0.3567	2385.19214	103.55997	100.0000

4ka

Prepared according to the procedure within 82 h as White solid (90.5 mg, 73% yield, dr > 20:1). mp 126.8 – 127.9 °C; $[\alpha]_D^{16} = -221.73$ (*c* 0.65, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 9.07 (d, *J* = 7.3 Hz, 1H), 8.89 (d, *J* = 8.3 Hz, 1H), 8.15 – 8.05 (m, 3H), 7.97 (d, *J* = 8.1 Hz, 1H), 7.88 (d, *J* = 7.7 Hz, 1H), 7.75 (dd, *J* = 7.8 Hz, 1H), 7.59 – 7.41 (m, 4H), 7.30 – 7.11 (m, 6H), 7.09 – 7.01 (m, 2H), 6.61 (d, *J* = 7.6 Hz, 1H), 5.88 (d, *J* = 3.8 Hz, 1H), 4.37 (s, 1H), 3.69 – 3.40 (m, 2H), 2.66 (s, 3H), 2.65 (s, 1H), 0.47 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.06, 174.17, 167.91, 155.68, 143.80,

138.25, 136.41, 134.33, 131.59, 131.41, 129.70, 129.12, 128.92, 128.81, 128.59, 128.18, 127.93, 127.42, 126.83, 126.14, 126.05, 125.63, 125.37, 125.28, 123.36, 119.21, 107.39, 72.35, 69.32, 60.88, 59.99, 58.19, 25.94, 13.19; HRMS (ESI) m/z Calcd. for $C_{39}H_{33}N_4O_4^+$ ([M+H]⁺) 621.2496, Found 621.2493; Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 12.8 min, t_{minor} = 16.5 min).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	12.813	VP	0.5851	2325.48999	50.13725	52.2698
2	16.558	BP	0.5818	2123.52197	44.10070	47.7302

4la

Prepared according to the procedure within 96 h as White solid (92.2 mg, 80% yield, dr > 20:1). mp 133.6.8 – 134.1 °C; $[\alpha]_D^{14} = -331.90$ (*c* 0.72, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 3.6 Hz, 1H), 8.07 – 8.01 (m, 3H), 7.46 (dd, *J* = 14.9, 6.9 Hz, 3H), 7.33 – 7.26 (m, 2H), 7.24 – 7.11 (m, 5H), 7.04 (d, *J* = 6.7 Hz, 2H), 6.68 (d, *J* = 7.7 Hz, 1H), 5.84 (d, *J* = 2.7 Hz, 1H), 4.72 (s, 1H), 3.71 – 3.51 (m, 2H), 2.77 (s, 3H), 2.59 (s, 1H), 0.50 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.49, 174.61, 167.54, 152.46, 143.80,

137.98, 136.28, 132.65, 130.93, 129.62, 129.00, 128.79, 128.70, 128.59, 128.19, 127.88, 126.62, 125.60, 125.35, 123.51, 119.28, 107.49, 70.67, 69.62, 60.93, 60.59, 59.47, 26.01, 13.21; HRMS (ESI) m/z Calcd. for $C_{33}H_{29}N_4O_4S^+$ ([M+H]⁺) 577.1904, Found 577.1902; Enantiomeric excess was determined to be 98% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 12.6 min, t_{minor} = 17.9 min).

S60

4ma

Prepared according to the procedure within 86 h as White solid (93.3 mg, 87% yield, dr > 20:1). mp 94.6 – 95.3 °C; $[\alpha]_D^{18} = -220.77$ (*c* 0.80, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 7.4 Hz, 1H), 7.98 (d, *J* = 8.0 Hz, 2H), 7.47 – 7.40 (m, 2H), 7.28 (dd, *J* = 7.6 Hz, 1H), 7.19 (d, *J* = 7.5 Hz, 1H), 7.17 – 7.10 (m, 4H), 6.96 (d, *J* = 6.6 Hz, 2H), 6.67 (d, *J* = 7.7 Hz, 1H), 5.71 (s, 1H), 4.37 (s, 1H), 3.75 – 3.61 (m, 2H), 3.16 (dt, *J* = 13.6, 6.8 Hz, 1H), 2.75 (s, 3H), 2.32 (s,

1H), 1.53 (d, J = 6.9 Hz, 3H), 1.39 (d, J = 6.8 Hz, 3H), 0.56 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.31, 174.33, 167.50, 165.63, 143.71, 138.28, 136.35, 129.56, 128.90, 128.58, 128.08, 127.76, 126.57, 125.75, 124.93, 123.39, 118.98, 107.42, 71.38, 69.52, 60.94, 60.20, 56.87, 27.53, 25.98, 21.91, 21.08, 13.28; HRMS (ESI) m/z Calcd. for C₃₂H₃₃N₄O₄⁺ ([M+H]⁺) 537.2496, Found 537.2499; Enantiomeric excess was determined to be 78% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 6.0 min, t_{minor} = 10.2 min).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	6.065	MM	0.2637	9498.81738	600.31177	51.2526
2	10.272	BB	0.4386	9034.53027	322.76035	48.7474

4na

Prepared according to the procedure within 72 h as White solid (82.3 mg, 81% yield, dr > 20:1). mp 112.3 – 113.6 °C; $[\alpha]_D^{18} = -168.71$ (*c* 0.47, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 7.4 Hz, 1H), 7.98 (d, J = 8.0 Hz, 2H), 7.46 – 7.40 (m, 2H), 7.32 (dd, J = 7.6 Hz, 1H), 7.23 (d, J = 7.3 Hz, 1H), 7.18 (dd, J = 13.6, 6.6 Hz, 4H), 7.02 (d, J = 6.8 Hz, 2H), 6.71 (d, J = 7.7 Hz, 1H), 5.75 (s, 1H), 4.29 (s, 1H), 3.80 – 3.59 (m, 2H), 2.79 (s, 3H), 2.44 (s, 1H), 2.41 (s, 3H),

0.58 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.18, 174.37, 167.47, 159.11, 143.71, 138.10, 136.21, 129.58, 128.94, 128.61, 128.13, 127.76, 126.55, 125.66, 125.06, 123.40, 119.01, 107.43, 70.76, 69.77, 60.97, 60.28, 57.09, 26.01, 13.25, 12.75; HRMS (ESI) m/z Calcd. for C₃₀H₂₉N₄O₄⁺ ([M+H]⁺) 509.2183, Found 509.2178; Enantiomeric excess was determined to be 66% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 7.8 min, t_{minor} = 10.7 min).

S64

5

Prepared according to the procedure within 48 h as White solid (109.1 mg, 96% yield, dr > 20:1). mp 209.8 – 210.3 °C; $[\alpha]_D^{14}$ = -70.82 (*c* 0.83, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 7.5 Hz, 1H), 8.19 – 8.01 (m, 4H), 7.56 – 7.42 (m, 7H), 7.40 – 7.32 (m, 2H), 7.28 – 7.19 (m, 3H), 7.14 (dd, *J* = 7.6 Hz, 1H), 6.93 (d, *J* = 7.7 Hz, 1H), 4.73 (s, 1H), 3.69 – 3.53 (m, 2H), 3.30 (s, 3H), 0.59 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz,

CDCl₃) δ 176.21, 174.85, 170.42, 166.37, 156.48, 144.10, 138.07, 132.10, 131.74, 130.90, 129.82, 129.59, 129.00, 128.98, 128.80, 127.94, 127.48, 127.19, 126.76, 125.56, 124.18, 119.59, 108.33, 84.09, 68.08, 61.32, 60.66, 27.05, 13.32; HRMS (ESI) m/z Calcd. for C₃₅H₂₉N₄O₄⁺ ([M+H]⁺) 569.2183, Found 569.2179; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column,

hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 5.0 min, t_{minor} = 6.1 min).

#	Time	Area	Height	Width	Area%	Symmetry
1	5.048	6494.5	735.4	0.1365	49.843	0.801
2	6.185	6535.4	440.8	0.2471	50.157	0.75

3. X-ray crystal structure of 4ad.

X-ray crystal structure of **4ad**.

Bond precision:	C-C = 0.0049	А	W	avelength=	=0.71073
Cell: Temperature:	a=6.4132(4) alpha=90 173 K		b=10.991 beta=90	9(7)	c=40.683(2) gamma=90
	Calculated			Reported	
Volume	2867.9(3)			2867.9(3)	
Space group	P 21 21 21			P 21 21 21	L
Hall group	P 2ac 2ab			P 2ac 2ab	
Moiety formula	C35 H30 Cl N4	04		СЗ5 НЗО С]	l N4 04
Sum formula	C35 H30 Cl N4	04		СЗ5 НЗО С]	L N4 O4
Mr	606.08			606.08	
Dx,g cm-3	1.404			1.404	
Z	4			4	
Mu (mm-1)	0.182			0.182	
F000	1268.0			1268.0	
F000′	1269.11				
h,k,lmax	8,13,50			8,13,50	
Nref	5831[3372]			5813	
Tmin,Tmax	0.974,0.982			0.638,0.74	16
Tmin'	0.964				
Correction metho AbsCorr = NONE	od= # Reported	T Lin	nits: Tm	in=0.638 T	'max=0.746
Data completenes	ss= 1.72/1.00		Theta(ma	x)= 26.372	2
R(reflections) =	0.0435(4754)		wR2(refl	ections) =	0.0979(5813)
S = 1.048	Npai	r= 40	3		