Catalytic asymmetric construction of dispirotriheterocyclic structures through [3+2] cycloadditions of 4-amino pyrazolone-based azomethine ylides Yue Huang, Xiaoze Bao, Xingfu Wei, Jianfang Zhang, Shah Nawaz, Jingping Qu and Baomin Wang*
 State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China bmwang@dlut.edu.cn

Contents:

1. General information 1
2. Experimental sections 1
3. X-ray crystal structure of 4ad. 67

1. General information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. Column chromatography was performed on silica gel (200~300 mesh). Enantiomeric excesses (ee) were determined by HPLC using corresponding commercial chiral columns as stated at $30^{\circ} \mathrm{C}$ with UV detector at 254 nm . Optical rotations were reported as follows: $[a]_{D}^{T}$ (c g/100 mL, solvent). All ${ }^{1} \mathrm{H}$ NMR and ${ }^{19}$ F NMR spectra were recorded on a Bruker Avance II 400 MHz and Bruker Avance III 471 MHz respectively, ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance II 101 MHz or Bruker Avance III 126 MHz with chemical shifts reported as ppm (in CDCl_{3}, TMS as an internal standard). Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (δ, ppm), multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad singlet, $\mathrm{dd}=$ double doublet, coupling constants in Hz , integration). HRMS (ESI) was obtained with an HRMS/MS instrument (LTQ Orbitrap XL TM). The absolute configuration of 4ad was assigned by the X-ray analysis.

Starting materials: All the aldehydes were commercially obtained and recrystallized or distilled prior to use. (1) 4-Amino pyrazolones were prepared following the reported procedures: 5 X. Bao, S. Wei, X. Qian, J. Qu, B. Wang, L. Zou and G. Ge, Org. Lett., 2018, 20, 3394. (2) Methyleneindolinones were synthesized according to following literature procedures: (a) K. Suman, L. Srinu and S. Thennarasu, Org. Lett., 2014, 16, 3732; (b) A. Huang, J. J. Kodanko and L. E. Overman, J. Am. Chem. Soc., 2004, 126, 14043.

2. Experimental sections

General procedure for the synthesis of 4

In a reaction tube, 4-amino pyrazolone $\mathbf{1}(0.24 \mathrm{mmol})$, methyleneindolinone $3(0.2$ $\mathrm{mmol})$, catalyst $(0.02 \mathrm{mmol})$ and $3 \AA \mathrm{MS}(200 \mathrm{mg})$ were added into toluene (2 mL). Then aldehyde $2(0.24 \mathrm{mmol})$ was added and the reaction solution was stirred at $25^{\circ} \mathrm{C}$. After the reaction was complete (monitored by TLC), the crude product was purified by column chromatography (ethyl acetate/petroleum ether $=1 / 20$ to $1 / 4$) on silica gel to give the product 4.

Table 1: Optimization of reaction conditions. ${ }^{a} \mathrm{BPA}=$ chiral phosphoric acid.

entry	Cat.	Additives	Solvent	$\mathrm{t}[\mathrm{h}]$	Yield[\%] $^{\mathrm{b}}$	dr^{c}	$\mathrm{ee}[\%]^{\mathrm{d}}$
1	BPA-1	$3 \AA$	DCM	59	74	$>20: 1$	35
2	BPA-2	$3 \AA$	DCM	59	94	$>20: 1$	65
3	BPA-3	$3 \AA$	DCM	59	53	$>20: 1$	25
4	BPA-4	$3 \AA$	DCM	59	70	$>20: 1$	25
5	BPA-5	$3 \AA$	DCM	59	64	$>20: 1$	0
6	BPA-6	$3 \AA$	DCM	59	83	$>20: 1$	93
7	BPA-7	$3 \AA$	DCM	59	65	$>20: 1$	90
8	BPA-6	$3 \AA$	CHCl_{3}	43	78	$>20: 1$	78
9	BPA-6	$3 \AA$	THF	13	73	$>20: 1$	40
10	BPA-6	$3 \AA$	$\mathrm{Et}_{2} \mathrm{O}$	13	85	$>20: 1$	76
11	BPA-6	$3 \AA$	Tol	24	85	$>20: 1$	96
12^{e}	BPA-6	$3 \AA$	Tol	67	96	$>20: 1$	95
13^{e}	BPA-6	$4 \AA$	Tol	60	88	$>20: 1$	95
14^{e}	BPA-6	$5 \AA$	Tol	36	85	$>20: 1$	96
15^{e}	BPA-6	MgSO	4	Tol	36	82	$>20: 1$
16^{e}	BPA-6	-	Tol	84	72	$>20: 1$	95
$17^{\text {e.f }}$	BPA-6	$3 \AA$	Tol	60	86	$>20: 1$	95
$18^{e, f, g}$	BPA-6	$3 \AA$	Tol	60	97	$>20: 1$	95

${ }^{\text {a }}$ The reaction was conducted with $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.12 \mathrm{mmol}), \mathbf{3 a}(0.12 \mathrm{mmol})$ and cat. $(0.01 \mathrm{mmol}), \mathrm{MS}(100$ $\mathrm{mg})$ in solvent $(1.0 \mathrm{~mL})$ at room temperature under argon. ${ }^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{c}}$ Detected by ${ }^{1} \mathrm{HNMR}$ of the crude product. ${ }^{\mathrm{d}}$ Detected by chiral HPLC analysis. ${ }^{e}$ Without $\mathrm{Na}_{2} \mathrm{CO}_{3}{ }^{\mathrm{f}}$ No protection. ${ }^{\mathrm{g}}$ A the ratio of $\mathbf{1 a} / \mathbf{2 a} / \mathbf{3 a}$ was $1.2 / 1.2 / 1$.

Gram-scale reaction

($1.02 \mathrm{~g}, 81 \%$ yield, $>20: 1 \mathrm{dr}, 95 \%$ ee)
In a reaction tube, 4 -amino pyrazolone $\mathbf{1 a}(0.264 \mathrm{mmol}), \mathbf{3 a}(0.22 \mathrm{mmol})$, BPA-6 $(0.022 \mathrm{mmol})$ and $3 \AA \mathrm{MS}(220 \mathrm{mg})$ were added into toluene $(2.2 \mathrm{~mL})$. Then aldehyde $\mathbf{2 a}(0.264 \mathrm{mmol})$ was added and the reaction solution was stirred at $25^{\circ} \mathrm{C}$. After the reaction was complete (monitored by TLC), the crude product was purified by column chromatography (ethyl acetate/petroleum ether $=1 / 20$ to $1 / 4$) on silica gel to give the product 4aa with 81% yield, $>20: 1 \mathrm{dr}$ and 95% ee.

Procedure for the Synthesis of 5

A reaction tube was charged with $\mathbf{4 a a}(0.2 \mathrm{mmol})$ and dioxane $(2 \mathrm{~mL})$, then DDQ $(0.6 \mathrm{mmol})$ was added. The reaction was stirred at room temperature until it was complete (monitored by TLC), then the crude product was purified by column chromatography (ethyl acetate/petroleum ether $=1 / 10$) on silica gel to give the product 5 as a white solid.

Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

4aa

4aa

Prepared according to the procedure within 72 h as White solid ($110.6 \mathrm{mg}, 97 \%$ yield, $\mathrm{dr}>20: 1$). mp $176.2-177.5^{\circ} \mathrm{C}$; $[\alpha]_{D}^{19}=-385.22\left(c \quad 0.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.69(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.05-8.11(\mathrm{~m}, 3 \mathrm{H}), 7.58$ $-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 3.79-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~s}$, $3 \mathrm{H}), 2.68(\mathrm{~s}, 1 \mathrm{H}), 0.49(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.43$, $175.08,167.67,155.14,143.88,138.18,136.45,130.73,129.70,129.59,129.00$, $128.90,128.65,128.16,127.92,127.64,126.71,125.67,125.32,123.43,119.28,107.42$, 70.87, 69.21, 60.85, 60.41, 58.44, 26.02, 13.17; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$571.2340, Found 571.2323; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=9.9 \mathrm{~min}, t_{\text {minor }}=18.0 \mathrm{~min}$).

$4 a \mathrm{a}$

m
m
in
in

\#	Time	Area	Height	width	Area\%	Symmetry
1	9.569	10640.8	439	0.3788	50.075	0.869
2	17.684	10608.7	222.9	0.7352	49.925	0.888

| \# | Time | Area | Height | Width | Area\% | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | Symmetry

4ab

Prepared according to the procedure within 72 h as White solid ($93.0 \mathrm{mg}, 79 \%$ yield, $\mathrm{dr}>20: 1$). mp $110.0-110.5^{\circ} \mathrm{C}$; $[\alpha]_{D}^{18}$ $=-341.31\left(c 0.49, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.16-8.15(\mathrm{~m}, 3 \mathrm{H}), 7.82-7.91(\mathrm{~m}, 1 \mathrm{H})$, $7.70-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.09(\mathrm{~m}, 5 \mathrm{H})$, $6.74-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 3.46-3.66(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.60$ $(\mathrm{d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.48(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (470 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-116.57 ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.42,174.97,167.51,154.87$, $143.74,138.12,130.73,129.73 \quad(\mathrm{~J}=3.6 \mathrm{~Hz}), 129.53,129.42(\mathrm{~J}=3.8 \mathrm{~Hz}), 129.41$, $128.99,128.92,128.49,127.54,125.86,125.34,123.87,123.84,123.71,123.42,119.27$, $114.57(\mathrm{~J}=21.5 \mathrm{~Hz}), 107.26,70.77,62.03,60.89,59.87,58.88,26.18,13.12$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{FN}_{4} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$589.2246, Found 589.2234; Enantiomeric excess was determined to be 90% (determined by HPLC using chiral ADH column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=9.2 \mathrm{~min}$, $\left.t_{\text {minor }}=14.0 \mathrm{~min}\right)$.

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s }]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	9.210	VP	0.3891	1.96098 e 4	791.26025	95.0104
2	14.025	MM	0.5644	1029.83936	30.41260	4.9896

$4 a c$

Prepared according to the procedure within 72 h as White solid ($125.7 \mathrm{mg}, 97 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 133.3-134.0^{\circ} \mathrm{C} ;[\alpha]_{D}^{17}$ $=-285.85\left(c 0.83, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.21-8.00(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.65(\mathrm{~m}, 2 \mathrm{H})$, $7.55-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.03(\mathrm{~m}, 2 \mathrm{H})$, 6.67 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H})$, $3.73-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.47$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.21$, $174.95,167.54,154.74,144.00,138.13,135.86,132.50,131.58,130.72,129.57$, $129.54,129.15,128.99,128.93,128.68$, $127.53,127.00$, $126.92,125.35,123.58$, $123.38,119.31,107.49,70.62,66.31,60.88,60.06,58.76,26.26,13.14$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{BrN}_{4} \mathrm{O}_{4}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$649.1445, Found 649.1436; Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=6.0 \mathrm{~min}, t_{\text {minor }}=7.3$ min).

べが寺	$\stackrel{\text { d }}{ }$		ヘ－	$\stackrel{\sim}{1}$	\pm
천	＋		¢	－	$\stackrel{\sim}{2}$
11	।	｜			
\！	－				

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \quad[\mathrm{min}] \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	5.982	VV	0.3031	1.87300 e 4	962.18994	98.4062
2	7.253	VB	0.3152	303.34732	14.31570	1.5938

4ad

Prepared according to the procedure within 84 h as White solid ($108.7 \mathrm{mg}, 90 \%$ yield, $\mathrm{dr}>20: 1$) $\mathrm{mp} 143.8-144.5$ ${ }^{\circ} \mathrm{C} ; \quad[\alpha]_{D}^{19}=-402.59\left(c \quad 0.42, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400$ MHz, Chloroform-d) $\delta 8.68-8.45(\mathrm{~m}, 2 \mathrm{H}), 8.29-7.87$ $(\mathrm{m}, 3 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.45-$ $7.38(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.06(\mathrm{~m}, 4 \mathrm{H})$, $7.04-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.65(\mathrm{~m}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{ddq}, J=43.0,10.7,7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.47(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 177.14,175.06,167.51,154.98,143.84,138.91$, $138.04,133.81,130.79,129.47,129.36,129.25,129.02,128.93,128.29,127.61$, $126.80,125.61,125.40,124.86,123.60,119.25,107.58,70.83,68.42,60.92,60.17$, $58.50,26.15,13.16$; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{ClN}_{4} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 605.1950$, Found 605.1947; Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\left.\mathrm{mL} / \mathrm{min}, t_{\text {major }}=11.6 \mathrm{~min}, t_{\text {minor }}=20.4 \mathrm{~min}\right)$.

$\stackrel{\sim}{\infty}$		
\cdots		\%
층		0
- 1	-2,	1

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	10.126	BB	0.4078	4198.37402	161.24039	49.9935
2	19.077	BB	0.7902	4199.46533	80.55557	50.0065

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.660	BB	0.4052	2.83101 e 4	1082.30286	98.4364
2	20.458	MM	0.6780	449.69357	11.05484	1.5636

$4 a e$

Prepared according to the procedure within 84 h as White solid ($116.6 \mathrm{mg}, 90 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 135.0-135.5^{\circ} \mathrm{C}$; $[\alpha]_{D}^{20}=-333.38\left(c \quad 0.71, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.20-8.00(\mathrm{~m}, 4 \mathrm{H}), 7.56$ - 7.80 (m, 2H), $7.54-7.43$ (m, 3H), $7.40-7.20(\mathrm{~m}, 4 \mathrm{H})$, $7.15-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.67$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.70-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H})$, $2.52(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.47(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.21,174.95,167.54,154.74,144.00$, $138.13,135.86,132.50,131.58,130.72,129.57,129.54$, $129.15,128.99,128.93,128.68,127.53,127.00,126.92,125.35,123.58,123.38,119.31$, $107.49,70.62,66.31,60.88,60.06,58.76,26.26,13.14$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{BrN}_{4} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$649.1445, Found 649.1438; Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=13.8 \mathrm{~min}, t_{\text {minor }}=17.1 \mathrm{~min}$).

180	170	160	150	140	130	12		100	9		1							
									(ppm)					40	,	20	10	0

Peak \#	```RetTime [min]```	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	13.950	BB	0.8378	1.35765 e 4	253.11127	51.1867
2	17.217	BB	0.7808	1.29470 e 4	258.30658	48.8133

4af

Prepared according to the procedure within 94 h as White solid ($108.5 \mathrm{mg}, 90 \%$ yield, $\mathrm{dr}>20: 1$). mp $126.3-126.7^{\circ} \mathrm{C}$; $[\alpha]_{D}^{20}=-328.93\left(c \quad 0.76, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.03-8.18(\mathrm{~m}, 3 \mathrm{H}), 7.73$ (dd, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.64(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.30(\mathrm{~m}, 2 \mathrm{H})$, $7.14(\mathrm{~m}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}$, $1 \mathrm{H}), 3.67-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 1 \mathrm{H}), 2.26(\mathrm{~s}$, $3 \mathrm{H}), 0.48(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $-117.64,{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.56,175.01,167.54,159.22,154.91,143.77$, 139.85, 138.15, 130.71, 129.54, $129.28(\mathrm{~J}=2.8 \mathrm{~Hz}), 128.97,128.91,128.43$, 127.55,
$125.85,125.31,124.64(\mathrm{~J}=2.6 \mathrm{~Hz}), 123.39,119.27,115.10(\mathrm{~J}=21.1 \mathrm{~Hz}), 107.22$, 70.74, 62.07, 60.86, 59.83, 58.95, 26.23, 21.04, 13.11; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{FN}_{4} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$603.2402, Found 603.2390; Enantiomeric excess was determined to be 90% (determined by HPLC using chiral AD-H column, hexane/2propanol $\left.=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=18.4 \mathrm{~min}, t_{\text {minor }}=16.1 \mathrm{~min}\right)$.

4ag

Prepared according to the procedure within 108 h as White solid ($113.4 \mathrm{mg}, 97 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 130.2-131.1^{\circ} \mathrm{C}$; $[\alpha]_{D}^{19}=-303.20\left(c 0.44, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.08$ (d, $J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.70-$ $7.59(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.22 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (dd, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (dd, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 4.69$
(s, 1H), $3.70-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 0.49(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.44,175.09,167.73,155.14,143.93,138.18$,
137.31, 136.40, $130.70,129.82,129.59,128.99,128.88,128.81,128.62,127.80$, $127.65,127.27,125.64,125.30,123.68,123.40,119.28,107.32,70.85,69.16,60.84$, 60.39, 58.48, 26.05, 21.44, 13.17; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 585.2496, Found 585.2506; Enantiomeric excess was determined to be 93% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254$ $\mathrm{nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=9.9 \mathrm{~min}, t_{\text {minor }}=18.9 \mathrm{~min}$).

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \quad \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	9.960	BB	0.4303	6999.81592	253.41316	50.2397
2	18.867	BB	0.8731	6933.03271	124.60486	49.7603

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	9.906	VB	0.4406	1.62986 e 4	578.75165	96.6105
2	18.871	PB	0.8114	571.81323	10.77078	3.3895

4ah

Prepared according to the procedure within 96 h as White solid ($114.5 \mathrm{mg}, 98 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 126.3-127.0^{\circ} \mathrm{C}$; $[\alpha]_{D}^{20}=-281.98\left(c \quad 1.09, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.12-8.05(\mathrm{~m}, 3 \mathrm{H}), 7.60$ $-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=14.8,7.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.30-7.17$ (m, 2H), 7.12 (dd, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{q}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H})$, $6.65(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.75-3.37$ ($\mathrm{m}, 2 \mathrm{H}$), $2.77(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 0.45(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.57,175.08$, 167.70, 155.13, 143.88, 138.23, 137.74, 133.52, 130.71,

129．84，129．60，129．02，128．88，128．62，128．58，127．64，126．57，125．67，125．26， 123．40，119．19，107．39， $70.82,68.99,60.80,60.37,58.55,26.07,21.16,13.18$ ；HRMS （ESI）m／z Calcd．for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 585.2496$ ，Found 585．2487；Enantiomeric excess was determined to be 92%（determined by HPLC using chiral AD－H column， hexane $/ 2$－propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=16.8 \mathrm{~min}, t_{\text {minor }}=$ 19.7 min ）．

	$\underset{\sim}{\bar{\sim}}$	ふ人
令远	\cdots	
－		

4ah

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} U^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	16.850	BV	0.8485	1.84287 e 4	337.79550	50.1113
2	19.777	VB	0.8279	1.83468 e 4	349.82687	49.8887

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	16.813	BB	0.8401	1.57387 e 4	290.47037	96.0302
2	19.695	BB	0.7483	650.62445	13.08059	3.9698

4ai

Prepared according to the procedure within 84 h as White solid ($91.2 \mathrm{mg}, 76 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 122.2-123.5^{\circ} \mathrm{C}$; $[\alpha]_{D}^{19}=-221.5\left(c 0.53, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.74-8.66(\mathrm{~m}, 2 \mathrm{H}), 8.18-8.08(\mathrm{~m}, 3 \mathrm{H}), 7.70-7.58(\mathrm{~m}$, $2 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{td}, J=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (dd, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}, J=7.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.69-6.78(\mathrm{~m}, 3 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H})$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.50(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 1 \mathrm{H})$, $0.51(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $177.61,175.09,167.73,159.42,155.15,143.83,138.19$, $130.71,129.78,129.61,128.99,128.87,128.58,128.41,127.98,127.64,125.62$, $125.29,123.39,119.24,113.26,107.40,70.77,68.90,60.82,60.36,58.39,55.13,26.12$,

13．17；HRMS（ESI）m／z Calcd．for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 601.2445$ ，Found 601．2441； Enantiomeric excess was determined to be 81%（determined by HPLC using chiral AD－ H column，hexane $/ 2$－propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=29.4$ $\mathrm{min}, t_{\text {minor }}=25.4 \mathrm{~min}$ ）．

		\sim
会边会会		$\stackrel{\circ}{\circ}$
ファ		1

Peak RetTime Type Width Area Height Area

4aj

4aj

Prepared according to the procedure within 72 h as White solid ($81.2 \mathrm{mg}, 66 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 192.6-193.5^{\circ} \mathrm{C}$; $[\alpha]_{D}^{20}=-340.00\left(c \quad 0.29, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.71-8.60(\mathrm{~m}, 2 \mathrm{H}), 8.17-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.97-$ $7.94(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.43$ $-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.05(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 3.67-3.49(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H})$, $0.50(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 176.93, 174.99, 167.25, 154.82, 147.96, 143.66, 139.18, $137.95,132.73,130.91,129.33,129.25,129.03,128.98,127.53,125.76,125.51$, 123.89, 123.17, 121.80, 119.30, 107.80, 70.90, 68.04, 61.04, 60.11, 58.58, 26.18, 13.14; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$616.2191, Found 616.2185;

Enantiomeric excess was determined to be 99% (determined by HPLC using chiral ADH column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=8.5 \mathrm{~min}$, $t_{\text {minor }}=14.2 \mathrm{~min}$).

4aj

$\stackrel{\infty}{\circ} \dot{0} \dot{0}$
$\stackrel{ \pm}{\infty} \stackrel{ \pm}{\infty}$

4ak

Prepared according to the procedure within 94 h as White solid ($107.0 \mathrm{mg}, 87 \%$ yield, $\mathrm{dr}>20: 1$). mp $144.2-144.9$ ${ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{17}=-376.20\left(c 0.84, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.68-8.57(\mathrm{~m}, 2 \mathrm{H}), 8.15-8.00(\mathrm{~m}, 5 \mathrm{H}), 7.66-$ $7.40(\mathrm{~m}, 5 \mathrm{H}), 7.37-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.01(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 3.68-3.46(\mathrm{~m}, 2 \mathrm{H})$, 2.86 (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ (s, 3 H), 0.47 (t, $J=7.1 \mathrm{~Hz}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.88,175.01,167.20$, 154.78, 147.77, 144.27, 143.75, 137.89, 130.90, 129.34, 129.21, 129.03, 128.96, 128.95, 127.57, 127.52, 125.68, $125.52,123.77,123.19,119.26,107.79,70.93,68.12,61.05$,
60.16, 58.67, 26.20, 13.13; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 616.2191, Found 616.2181; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254$ $\left.\mathrm{nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=15.9 \mathrm{~min}, t_{\text {minor }}=31.7 \mathrm{~min}\right)$.

4al

Prepared according to the procedure within 94 h as White solid ($107.1 \mathrm{mg}, 90 \%$ yield, $\mathrm{dr}>20: 1)$. mp $145.4-145.9{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{21}=-380.61\left(c \quad 0.89, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66-8.57(\mathrm{~m}, 2 \mathrm{H}), 8.07-7.97(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.54-$ $7.46(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{td}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 3 \mathrm{H})$,

$7.10-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.71-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{~d}, J=4.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.81 ($\mathrm{s}, 3 \mathrm{H}$), $0.46(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.92,175.03,167.24,154.81,143.73$, $142.33,137.90,131.79,130.86,129.36,129.12,129.05$, $129.02,128.92,127.53,127.43,125.63,125.47,123.70$, $119.22,118.72,111.91,107.73,70.90,68.34,61.01,60.16$, 58.60, 26.15, 13.13; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{4}{ }^{+} \quad\left([\mathrm{M}+\mathrm{H}]^{+}\right) \quad 596.2292$, Found 596.2285;
Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane $/ 2-$ propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, $\left.0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=14.9 \mathrm{~min}, t_{\text {minor }}=20.6 \mathrm{~min}\right)$.

Peak \#	RetTime [min]	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s }} \end{gathered}$	Height [mAU]	Area $\%$
1	15.002	VB	0.7993	9156.83984	179.46423	50.3280
2	20.483	BB	0.9240	9037.46973	154.14279	49.6720

4am

4am

Prepared according to the procedure within 84 h as White solid ($109.4 \mathrm{mg}, 95 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 145.3-146.9^{\circ} \mathrm{C}$; $[\alpha]_{D}^{20}=-289.30\left(c \quad 0.94, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.02-8.10(\mathrm{~m}, 3 \mathrm{H}), 7.60$ $-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.19$ $-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{dd}, J=4.9,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.66-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}$, $1 \mathrm{H}), 3.71-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $1 \mathrm{H}) ., 0.48(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.22,174.94,167.49$, 154.94, 144.04, 140.00, 138.09, 130.79, 129.47, 129.34, 129.00, 128.88, 128.78, 127.66, 126.50, 125.67, 125.38, 125.06, 124.45, 123.48, 119.28, 107.52, 70.69, 65.90, 60.90, 60.20, 58.45, 26.26, 13.15; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 577.1904, Found 577.1902; Enantiomeric excess was determined to be 96% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=70 / 30, \lambda=254$ $\left.\mathrm{nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=12.6 \mathrm{~min}, t_{\text {minor }}=32.9 \mathrm{~min}\right)$.

Peak RetTime Type Width Area Height Area

1	12.574 PE	0.5411	1.55627 e 4	446.01660	97.7735
2	32.875 MM	1.4676	354.38586	4.02450	2.2265

4an

Prepared according to the procedure within 72 h as White solid ($119.1 \mathrm{mg}, 96 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 126.0-126.9^{\circ} \mathrm{C}$; $[\alpha]_{D}^{19}=-364.95\left(c \quad 0.43, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.84-8.68(\mathrm{~m}, 2 \mathrm{H}), 8.26-8.06(\mathrm{~m}, 3 \mathrm{H}), 7.60-$ $7.80 \mathrm{~m}, 5 \mathrm{H}), 7.58-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.29-$ $7 . .36(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.11(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.77-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.82(\mathrm{~m}$, $3 \mathrm{H}), 0.50(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $177.43,175.13,167.68,155.15,143.96,138.16,134.04$, 133.28, 132.84, 130.77, 129.77, 129.60, 129.00, 128.93, 128.74, 128.26, 127.68, $127.55,127.50,125.91,125.84,125.72,125.36,124.65,123.49,119.33,107.47,70.92$, $69.29,60.89,60.37,58.69,26.09,13.16$; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{39} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 621.2496$, Found 621.2494; Enantiomeric excess was determined to be 94% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254$ $\left.\mathrm{nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=12.1 \mathrm{~min}, t_{\text {minor }}=30.6 \mathrm{~min}\right)$.

$\underset{\sim}{\sim} \sim \sim_{0}^{\infty}$		○ぶオ	a	a
츤	\cdots			－
－ 1	।	$\xrightarrow{\square}$	1／	1

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	12.078	BP	0.5721	2.09724 e 4	576.92859	97.0048
2	30.581		1.0708	647.56854	7.32914	2.9952

$4 a 0$

4 ao

Prepared according to the procedure within 96 h as White solid ($80.7 \mathrm{mg}, 70 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 105.6-105.2^{\circ} \mathrm{C}$; $[\alpha]_{D}^{20}=-128.36\left(c \quad 0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.23$ $-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{dd}, J=7.8 \mathrm{~Hz}$, 1H), 6.50 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.39 (dd, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.04(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.53(\mathrm{~m}$, $2 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.82-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.11(\mathrm{~m}, 6 \mathrm{H}), 0.63(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.33,172.30,169.26,157.88,142.79,137.34,133.24,129.04,129.02$, 128.81, 128.10, 127.58, 127.47, 125.48, 123.81, 121.89, 119.85, 106.97, 64.49, 63.69, 60.26, 52.09, 43.95, 32.03, 30.13, 26.69, 26.27, 25.97, 25.93, 13.54; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 577.2809$, Found 577.2811; Enantiomeric excess was determined to be 33% (determined by HPLC using chiral AD-H column, hexane/2propanol $\left.=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=22.8 \mathrm{~min}, t_{\text {minor }}=8.7 \mathrm{~min}\right)$.

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	8.672	BV	0.4555	3776.38086	125.35869	50.8044
2	22.697	BB	1.1783	3656.80151	37.21746	49.1956

4ba

Prepared according to the procedure within 84 h as White solid ($114.7 \mathrm{mg}, 95 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 138.9-139.5^{\circ} \mathrm{C} ;[\alpha]_{D}^{19}$ $=-276.16\left(c 0.58, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.08-8.18(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.45(\mathrm{~m}, 5 \mathrm{H})$, $7.33-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.06-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.89(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 3.53-3.64(\mathrm{~m}, 2 \mathrm{H})$, 2.76 (s, 3H), $2.62(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.58(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.01,174.80,167.35,154.97,142.46,138.09,135.97$, $131.46,130.79,129.53,129.03,128.93,128.76,128.71,128.39,128.00,127.59$, 126.73, 126.10, 125.41, 119.21, 108.41, 70.80, 69.15, 61.10, 60.46, 58.05, 26.13, 13.31; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{ClN}_{4} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$605.1950, Found 605.1953; Enantiomeric excess was determined to be 92% (determined by HPLC using chiral ADH column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=7.0 \mathrm{~min}$, $\left.t_{\text {minor }}=14.9 \mathrm{~min}\right)$.

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \frac{\%}{\circ} \end{gathered}$
1	6.441		0.2240	8040.66992	558.33801	50.501
2	12.197	BB	0.488	7881.06104	252.38983	49.498

4ca

4ca

Prepared according to the procedure within 84 h as White solid ($103.7 \mathrm{mg}, 80 \%$ yield, $\mathrm{dr}>20: 1$). mp $134.0-134.6^{\circ} \mathrm{C} ;[\alpha]_{D}^{18}$ $=254.18\left(c 0.69, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.27(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.65-7.55$ (m, 2H), $7.54-7.43$ (m, 4H), $7.28-7.19$ (m, 4H), $7.13-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 3.84-3.53(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H})$, $2.61(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.59(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.91$, $174.77,167.34,154.94,142.93,138.11,135.96,131.81,131.66,130.79,129.54,129.04$, 128.93, 128.78, 128.39, 128.00, 127.58, 126.74, 125.40, 119.19, 116.05, 108.93, 70.79, 69.12, 61.13, 60.41, 58.04, 26.11, 13.33; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{BrN}_{4} \mathrm{O}_{4}{ }^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 649.1445$, Found 649.1444; Enantiomeric excess was determined to be 83% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254$ $\mathrm{nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=6.3 \mathrm{~min}, t_{\text {minor }}=12.4 \mathrm{~min}$).

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	6.343	VV	0.3153	3.07090 e 4	1522.47791	91.4570
2	12.441		0.5036	2868.52686	89.10049	8.5430

4da

4da

Prepared according to the procedure within 96 h as White solid ($97.2 \mathrm{mg}, 81 \%$ yield, $\mathrm{dr}>20: 1$). mp $129.3-130.7$ ${ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{15}=-289.96\left(c 0.76, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.70-8.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.15-8.07(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.55(\mathrm{~m}$, 2H), $7.53-7.43$ (m, 3H), $7.24-7.14$ (m, 4H), $7.13-7.05$ (m, 2H), 6.84 (dd, $J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.88(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $3.75-3.49(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.54(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.12,175.03,167.63,156.67,155.06,138.26,137.44$, $136.47,131.00,130.72,129.58,128.95,128.90$, 128.14, 127.90, 127.62, 126.70, $125.23,119.14,113.50,112.55,107.86,70.84,69.32,60.87,60.79,58.38,55.99,26.11$, 13.27; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{5}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 601.2445$, Found 601.2439; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral ADH column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=8.1 \mathrm{~min}$, $\left.t_{\text {minor }}=12.3 \mathrm{~min}\right)$.

ㄲon			$=$
会远		$\infty \times \infty$	$\stackrel{\rightharpoonup}{0}$
' 1		1) V1	1

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area $\%$
1	8.118	BB	0.3290	1.29060 e 4	614.63336	49.9738
2	12.354	BB	0.4955	1.29196 e 4	410.17297	50.0262

4ea

Prepared according to the procedure within 96 has White solid ($97.0 \mathrm{mg}, 83 \%$ yield, $\mathrm{dr}>20: 1$). mp $129.0-129.6^{\circ} \mathrm{C} ;[\alpha]_{D}^{14}$ $=-318.26\left(c \quad 0.56, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.75-8.65(\mathrm{~m}, 2 \mathrm{H}), 8.16-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.65-$ $7.59(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23$ $-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.93(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 3.79-3.45(\mathrm{~m}, 2 \mathrm{H})$, $2.77(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 0.51(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.39,175.07,167.77,155.17,141.56$, $138.21,136.47,132.93,130.72,129.64,129.59,128.99,128.91,128.88,128.11,127.88$, $127.66,126.69,126.23,125.30,119.27,107.21,70.83,69.18,60.80,60.51,58.35$, 26.04, 21.48, 13.18; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 585.2496$, Found 585.2489; Enantiomeric excess was determined to be 94% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}, t_{\text {major }}=6.1 \mathrm{~min}, t_{\text {minor }}=8.5 \mathrm{~min}$).

4ea

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{\star}\right. \text {] }} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \frac{\%}{\circ} \end{gathered}$
1	6.132	BB	0.2419	532.95886	98.29766	51.2463
2	8.601		0.3365	1458.39343	67.39500	48.7537

4fa

$$
\begin{aligned}
& \text { Prepared according to the procedure within } 72 \mathrm{~h} \text { as White solid } \\
& (104.5 \mathrm{mg}, 94 \% \text { yield, dr }>20: 1) . \mathrm{mp} 214.6-215.6^{\circ} \mathrm{C} ;[\alpha]_{D}^{20} \\
& =-261.28\left(c 0.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.67 \\
& (\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.12-8.05(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 2 \mathrm{H}),
\end{aligned}
$$ ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.88,175.08,167.61,155.02,140.83,138.12,136.37$, $130.69,130.10,129.56,128.99,128.88,128.64,128.28,128.08,127.64,127.04$, 126.16, 125.37, 123.41, 119.33, 108.95, 70.73, 69.31, 60.97, 60.43, 58.82, 13.15; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$557.2183, Found 557.2175;

Enantiomeric excess was determined to be 73% (determined by HPLC using chiral ADH column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=20.2$ $\left.\min , t_{\text {minor }}=9.6 \mathrm{~min}\right)$.

4fa

$\frac{n}{n}$

4fa

4ga

$1 \mathrm{H}), 0.44(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.74,175.09,167.65$, $155.05,143.12,138.16,136.38,135.20,130.76,129.64,129.61,129.01,128.94$, 128.61, 128.56, 128.41, 128.32, 127.68, 127.56, 127.22, 126.65, 125.72, 125.37, $123.48,119.32,108.62,70.73,69.31,60.90,60.20,59.38,43.93,13.12$; HRMS (ESI)
m / z Calcd. for $\mathrm{C}_{41} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$647.2653, Found 647.2642; Enantiomeric excess was determined to be 87% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=8.6 \mathrm{~min}, t_{\text {minor }}=$ 20.2 min).

4ga

[^0]

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	8.617	BB	0.4153	2653.98486	100.75963	50.5429
2	20.170	BB	1.0840	2596.96558	32.78823	49.4571

4ha

4ha

Prepared according to the procedure within 96 h as White solid ($108.6 \mathrm{mg}, 93 \%$ yield, $\mathrm{dr}>20: 1$). mp $115.2-116.2^{\circ} \mathrm{C} ;[\alpha]_{D}^{19}$ $=-333.70\left(c 0.86, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.89$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.07 (dd, $J=15.5,7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.53$ (dd, J $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 3.68-$ $3.50(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 0.50(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.13,174.16,167.81$, 155.99, 143.81, 138.69, 138.30, 136.47, 131.89, 130.16, 129.82, 129.75, 129.05,
$128.60,128.56,128.13,127.90,126.81,126.18,125.66,125.19,123.34,118.99,107.36$, $71.99,69.16,60.86,60.04,57.83,25.96,22.91,13.22$; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$585.2496, Found 585.2485; Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2propanol $\left.=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=10.0 \mathrm{~min}, t_{\text {minor }}=11.9 \mathrm{~min}\right)$.

4ia

4ia

Prepared according to the procedure within 96 h as White solid ($99.3 \mathrm{mg}, 85 \%$ yield, $\mathrm{dr}>20: 1$). mp $123.2-124.3^{\circ} \mathrm{C} ;[\alpha]_{D}^{17}$ $=-239.93\left(c 0.57, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.71$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.46-7.56(\mathrm{~m}$, $5 \mathrm{H}), 7.33$ (dd, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (dd, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.11 (dd, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.03 (d, $J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 3.75-3.47(\mathrm{~m}, 2 \mathrm{H}), 2.83$ $(\mathrm{s}, 3 \mathrm{H}), 2.63(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 0.53(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 177.44,175.09,167.73,155.14,143.93$, $138.18,137.31,136.40,130.70,129.82,129.59,128.99,128.88,128.81,128.62$,
$127.80,127.65,127.27,125.64,125.30,123.68,123.40,119.28,107.32,70.85,69.16$, 60.84, 60.39, 58.48, 26.05, 21.44, 13.17; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 585.2496$, Found 585.2494; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254$ $\left.\mathrm{nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=11.1 \mathrm{~min}, t_{\text {minor }}=18.1 \mathrm{~min}\right)$.

Prepared according to the procedure within 84 h as White solid ($96.5 \mathrm{mg}, 82 \%$ yield, dr>20:1). mp 128.5.0-129.2 ${ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{18}=-328.99\left(c \quad 0.75 .9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.76-8.66(\mathrm{~m}, 2 \mathrm{H}), 8.13-8.02(\mathrm{~m}, 3 \mathrm{H})$, $7.50-7.44$ (m, 2H), $7.35-7.26$ (m, 3H), 7.25 (d, $J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 3.74$ $-3.41(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.49$ ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-108.68$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.49,174.89,167.60$, 154.37, 143.82, 138.05, 136.37, 129.96, 129.88, 129.58, 129.03, 128.71, 128.22, 127.94, 126.64, 125.80 (d, $J=3.2 \mathrm{~Hz}$), 125.58, 125.36, 123.50, $119.18,116.02$ (d, $J=21.6 \mathrm{~Hz}$), 107.50, 70.70, 69.13, 60.91, 60.31, 58.43, 26.03, 13.16; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{FN}_{4} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 589.2246$, Found 589.2228; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral ADH column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=8.4 \mathrm{~min}$ $\left.t_{\text {minor }}=18.7 \mathrm{~min}\right)$.

4ka

4ka

Prepared according to the procedure within 82 h as White solid ($90.5 \mathrm{mg}, 73 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 126.8-127.9^{\circ} \mathrm{C}$; $[\alpha]_{D}^{16}=-221.73\left(c \quad 0.65, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.07(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.15-8.05(\mathrm{~m}, 3 \mathrm{H}), 7.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.30$ $-7.11(\mathrm{~m}, 6 \mathrm{H}), 7.09-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.88(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 3.69-3.40(\mathrm{~m}, 2 \mathrm{H})$, $2.66(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 1 \mathrm{H}), 0.47(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.06,174.17,167.91,155.68,143.80$, $138.25,136.41,134.33,131.59,131.41,129.70,129.12,128.92,128.81,128.59$, $128.18,127.93,127.42,126.83,126.14,126.05,125.63,125.37,125.28,123.36,119.21$, 107.39, 72.35, 69.32, 60.88, 59.99, 58.19, 25.94, 13.19; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{39} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$621.2496, Found 621.2493; Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=12.8 \mathrm{~min}, t_{\text {minor }}=16.5 \mathrm{~min}$).


```
\circ\, &
```



```
N~~
~
```


4ka

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	12.813	VP	0.5851	2325.48999	50.13725	52.2698
2	16.558	BP	0.5818	2123.52197	44.10070	47.7302

4la

4la

Prepared according to the procedure within 96 h as White solid ($92.2 \mathrm{mg}, 80 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 133.6 .8-134.1^{\circ} \mathrm{C}$; $[\alpha]_{D}^{14}=-331.90\left(c \quad 0.72, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-8.01(\mathrm{~m}, 3 \mathrm{H}), 7.46$ (dd, $J=14.9,6.9 \mathrm{~Hz}, 3 \mathrm{H}$), $7.33-7.26$ (m, 2H), $7.24-7.11$ (m, 5 H), 7.04 (d, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.68$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.84 (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 3.71-3.51(\mathrm{~m}, 2 \mathrm{H}), 2.77$ (s, $3 \mathrm{H}), 2.59(\mathrm{~s}, 1 \mathrm{H}), 0.50(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.49,174.61,167.54,152.46,143.80$, 137.98, 136.28, 132.65, 130.93, 129.62, 129.00, 128.79, 128.70, 128.59, 128.19, $127.88,126.62,125.60,125.35,123.51,119.28,107.49,70.67,69.62,60.93,60.59$, 59.47, 26.01, 13.21; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$577.1904, Found 577.1902; Enantiomeric excess was determined to be 98% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}, t_{\text {major }}=12.6 \mathrm{~min}, t_{\text {minor }}=17.9 \mathrm{~min}$).

4ma

4ma

Prepared according to the procedure within 86 h as White solid ($93.3 \mathrm{mg}, 87 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 94.6-95.3^{\circ} \mathrm{C}$; $[\alpha]_{D}^{18}=-220.77\left(c \quad 0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.47-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, 6.67 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 3.75-3.61$ $(\mathrm{m}, 2 \mathrm{H}), 3.16(\mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}$, $1 \mathrm{H}), 1.53(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.56(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 177.31, 174.33, 167.50, 165.63, 143.71, 138.28, 136.35, $129.56,128.90,128.58,128.08,127.76,126.57,125.75,124.93,123.39,118.98,107.42$, $71.38,69.52,60.94,60.20,56.87,27.53,25.98,21.91,21.08,13.28$; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$537.2496, Found 537.2499; Enantiomeric excess was determined to be 78% (determined by HPLC using chiral AD-H column, hexane/2propanol $\left.=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=6.0 \mathrm{~min}, t_{\text {minor }}=10.2 \mathrm{~min}\right)$.

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.065	MM	0.2637	9498.81738	600.31177	51.2526
2	10.272	BB	0.4386	9034.53027	322.76035	48.7474

4na

4na

Prepared according to the procedure within 72 h as White solid ($82.3 \mathrm{mg}, 81 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 112.3-113.6^{\circ} \mathrm{C}$; $[\alpha]_{D}^{18}=-168.71\left(c \quad 0.47, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=13.6,6.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.02(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.71$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.75$ (s, 1H), 4.29 (s, 1H), $3.80-3.59(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$, $0.58(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.18$, 174.37, 167.47, 159.11, 143.71, 138.10, 136.21, 129.58, 128.94, 128.61, 128.13, 127.76, 126.55, 125.66, 125.06, 123.40, 119.01, 107.43, 70.76, 69.77, 60.97, 60.28, 57.09, 26.01, 13.25, 12.75; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$509.2183, Found 509.2178; Enantiomeric excess was determined to be 66% (determined by HPLC using chiral ADH column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=7.8 \mathrm{~min}$, $\left.t_{\text {minor }}=10.7 \mathrm{~min}\right)$.
 11

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	7.811	MM	0.2390	4553.16455	317.55609	52.8711
2	10.701	BV	0.3240	4058.66113	187.88934	47.1289

5

Prepared according to the procedure within 48 h as White solid ($109.1 \mathrm{mg}, 96 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 209.8-210.3^{\circ} \mathrm{C} ;[\alpha]_{D}^{14}$ $=-70.82\left(c 0.83, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.19-8.01(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.42(\mathrm{~m}, 7 \mathrm{H})$, $7.40-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.14$ (dd, $J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 3.69-3.53(\mathrm{~m}, 2 \mathrm{H})$, $3.30(\mathrm{~s}, 3 \mathrm{H}), 0.59(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.21,174.85,170.42,166.37,156.48,144.10,138.07,132.10,131.74$, 130.90 , 129.82, 129.59, 129.00, 128.98, 128.80, 127.94, 127.48, 127.19, 126.76, $125.56,124.18,119.59,108.33,84.09,68.08,61.32,60.66,27.05,13.32$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$569.2183, Found 569.2179; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column,
hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=5.0 \mathrm{~min}, t_{\text {minor }}=6.1$ min).

\#									Time	Area	Height	Width		Area\%		Symmetry
1	5.048	6494.5	735.4	0.1365	49.843	0.801										
2	6.185	6535.4	440.8	0.2471	50.157	0.75										

\#	Time	Area	Height	Width	Area\%	Symmetry
1	5.016	26732.8	3019.7	0.1382	97.457	0.781
2	6.128	697.7	44	0.2372	2.543	0.794

3. X-ray crystal structure of 4ad.

X-ray crystal structure of 4ad.

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0049 \mathrm{~A}$		Wavelength $=0.71073$
Cell:	$\mathrm{a}=6.4132(4)$	$\mathrm{b}=10.9919(7)$	$\mathrm{C}=40.683(2)$
	$\mathrm{alpha}=90$	beta $=90$	gamma $=90$

	Calculated	Reported
Volume	2867.9(3)	2867.9(3)
Space group	P 212121	P 212121
Hall group	P 2ac 2 ab	P 2ac 2 ab
Moiety formula	C35 H30 Cl N4 O4	C35 H30 Cl N4 O4
Sum formula	C35 H30 Cl N4 O4	C35 H30 Cl N4 O4
Mr	606.08	606.08
Dx,g cm-3	1.404	1.404
Z	4	4
Mu (mm-1)	0.182	0.182
F000	1268.0	1268.0
F000'	1269.11	
h, k, 1 max	8,13,50	8,13,50
Nref	5831 [3372]	5813
Tmin, Tmax	0.974,0.982	0.638,0.746
Tmin'	0.964	

```
Correction method= # Reported T Limits: Tmin=0.638 Tmax=0.746
AbsCorr = NONE
```

Data completeness $=1.72 / 1.00$	Theta $(\mathrm{max})=26.372$
R (reflections $)=0.0435(4754) \quad$ wR2 (reflections) $=0.0979(5813)$	
$\mathrm{S}=1.048 \quad$ Npar $=403$	

[^0]:

