Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

SIX NEW TRITERPENOIDS WITH F WITH ANTI-INFLAMMATORY ACTIVITY FROM GYPSOPHILA

OLDHAMIANA

Haoyi Sun^a, Tingting Zhao^a, Lei Liu^a, Xiaodong Mou^a, Jingyong Sun^{a,b,c*}

^a Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China

^bKey Laboratory for Biotech-Drugs Ministry of Health, Jinan, Shandong, 250117, P. R. China

Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, P. R. China

* Corresponding author. e-mail: sunjingyong08@hotmail.com (J.Y. Sun). phone: +86-531-59567209; fax: +86-531-

59567077

Supporting Information

Contents

Chart S1. Chart of extraction and isolation	4
Table S1. Crystal data and structure refinement for compound 6	5
Table S2. In vitro inflammatory activity of compounds 1-12	6
Figure S1. Structures of compounds 7-12	6
Figure S2. HPLC spectrum of compound 1	7
Figure S3. IR spectrum of compound 1	7
Figure S4. HR-ESI-MS spectrum ofcompound 1	8
Figure S5. ¹ H-NMR spectrum of compound 1 in C ₅ D ₅ N (600 MHz)	8
Figure S6. ¹³ C-NMR spectrum of compound 1 in C ₅ D ₅ N (150 MHz)	9
Figure S7. DEPT spectrum of compound 1 in C_5D_5N	9
Figure S8. HSQC spectrum of compound 1 in C₅D₅N	.10
Figure S9. HMBC spectrum of compound ${f 1}$ in C5D5N	.10
Figure S10. HPLC spectrum of compound 2	.11
Figure S11. IR spectrum of compound 2	.11
Figure S12. HR-ESI-MS spectrum ofcompound 2	.12
Figure S13. ¹ H-NMR spectrum of compound 2 in C ₅ D ₅ N (600 MHz)	.12
Figure S14. ¹³ C-NMR spectrum of compound 2 in C ₅ D ₅ N (150 MHz)	.13
Figure S15. HSQC spectrum of compound 2 in C₅D₅N	.13
Figure S16. DEPT spectrum of compound 2 in C ₅ D ₅ N	.14
Figure S17. HMBC spectrum of compound 2 in C_5D_5N	.15
Figure S18. HPLC spectrum of compound 3	.15
Figure S19. IR spectrum of compound 3	.16
Figure S20. HR-ESI-MS spectrum ofcompound 3	.16
Figure S21. ¹ H-NMR spectrum of compound 3 in C₅D₅N (600 MHz)	.17

Figure S22.	$^{13}\text{C-NMR}$ spectrum of compound $\boldsymbol{3}$ in C_5D_5N (150 MHz)	.17
Figure S23.	DEPT spectrum of compound ${f 3}$ in C ₅ D ₅ N	.18
Figure S24.	HSQC spectrum of compound ${f 3}$ in C ₅ D ₅ N	.18
Figure S25.	HMBC spectrum of compound ${\bf 3}$ in $C_5 D_5 N$.19
Figure S26.	HPLC spectrum of compound 4	.19
Figure S27.	IR spectrum of compound 4	.20
Figure S28.	HR-ESI-MS spectrum of compound 4	.20
Figure S29.	¹ H-NMR spectrum of compound 4 in C_5D_5N (600 MHz)	.21
Figure S30.	$^{13}\text{C-NMR}$ spectrum of compound $\textbf{4}$ in $\text{C}_{5}\text{D}_{5}\text{N}$ (150 MHz)	.21
Figure S31.	DEPT spectrum of compound 4 in C_5D_5N	.22
Figure S32.	HSQC spectrum of compound ${\bm 4}$ in $C_5 D_5 N$.23
Figure S33.	HMBC spectrum of compound 4 in $C_5 D_5 N$.23
Figure S34.	HPLC spectrum of compound 5	.24
Figure S35.	IR spectrum of compound 5	.24
Figure S36.	HR-ESI-MS spectrum of compound 5	.25
Figure S37.	¹ H-NMR spectrum of compound 5 in C_5D_5N (600 MHz)	.25
Figure S38.	$^{13}\text{C-NMR}$ spectrum of compound 5 in C_5D_5N (150 MHz)	.26
Figure S39.	HSQC spectrum of compound ${\bf 5}$ in $C_5 D_5 N$.26
Figure S40.	HMBC spectrum of compound ${\bf 5}$ in $C_5 D_5 N$.27
Figure S41.	HPLC spectrum of compound 6	.27
Figure S42.	IR spectrum of compound 6	.28
Figure S43.	HR-ESI-MS spectrum of compound 6	.28
Figure S44.	¹ H-NMR spectrum of compound 6 in C_5D_5N (600 MHz)	.29
Figure S45.	$^{13}\text{C-NMR}$ spectrum of compound 6 in C ₅ D ₅ N (150 MHz)	.29
Figure S46.	DEPT spectrum of compound 6 in C_5D_5N	.30
Figure S47.	HSQC spectrum of compound ${\bf 6}$ in $C_5 D_5 N$.30
Figure S48.	HMBC spectrum of compound 6 in $C_5 D_5 N$.31
Figure S49.	NOESY spectrum of compound 6 in $C_5 D_5 N$.31
Figure S50.	HPLC spectrum of compound 7	.32
Figure S51.	¹ H-NMR spectrum of compound 7 in C_5D_5N (600 MHz)	.32
Figure S52.	¹³ C-NMR spectrum of compound 7 in C ₅ D ₅ N (150 MHz)	.33
Figure S53.	HPLC spectrum of compound 8	.33
Figure S54.	¹ H-NMR spectrum of compound 8 in C_5D_5N (600 MHz)	.34
Figure S55.	¹³ C-NMR spectrum of compound 8 in C ₅ D ₅ N (150 MHz)	.34
Figure S56.	HPLC spectrum of compound 9	.35
Figure S57.	¹ H-NMR spectrum of compound 9 in C_5D_5N (600 MHz)	.35
Figure S58.	¹³ C-NMR spectrum of compound 9 in C ₅ D ₅ N (150 MHz)	.36
Figure S59.	HPLC spectrum of compound 10	.36
Figure S60.	¹ H-NMR spectrum of compound 10 in C_5D_5N (600 MHz)	.37
Figure S61.	$^{13}\text{C-NMR}$ spectrum of compound $\textbf{10}$ in C_5D_5N (150 MHz)	.37
Figure S62.	HPLC spectrum of compound 11	.38
Figure S63.	¹ H-NMR spectrum of compound 11 in C_5D_5N (600 MHz)	.38
Figure S64.	¹³ C-NMR spectrum of compound 11 in C ₅ D ₅ N (150 MHz)	.39

Figure S65. HPLC spectrum of compound 12	39
Figure S66. ¹ H-NMR spectrum of compound 12 in C ₅ D ₅ N (600 MHz)	40
Figure S67. ¹³ C-NMR spectrum of compound 12 in C₅D₅N (150 MHz)	40

Chart S1. Chart of extraction and isolation

Table SI. Crystal data and structure renner			
Identification code	cu_2019112001 (CCDC number: 2169252)		
Empirical formula	$C_{30}H_{46}O_4$		
Formula weight	470.67		
Temperature	296(2) К		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	P 21		
Unit cell dimensions	a = 7.4419(7) Å	? = 90°.	
	b = 11.3693(11) Å	? = 94°.	
	c = 14.9985(14) Å	? = 90°.	
Volume	1266.6(2) Å ³		
Z	2		
Density (calculated)	1.234 Mg/m ³		
Absorption coefficient	0.623 mm ⁻¹		
F(000)	516		
Theta range for data collection	4.9 to 66.6°.		
Index ranges	-8<=h<=8, -13<=k<=13, -16<=l<=17		
Reflections collected	9188		
Independent reflections	4042 [R(int) = 0.199]		
Completeness to theta = 66.59°	96.1 %		
Absorption correction	multi-scan		
Max. and min. transmission	0.836 and 0.780		
Refinement method	Refinement on F ²		
Data / restraints / parameters	4042 / 1 / 315		
Goodness-of-fit on F ²	1.002		
Final R indices [I>2sigma(I)]	R1 = 0.1099, wR2 = 0.252	3	
R indices (all data)	R1 = 0.1795, wR2 = 0.3047		
Absolute structure parameter	-0.9(6)		
Largest diff. peak and hole	0.45 and -0.65 e.Å ⁻³		

Table S1. Crystal data and structure refinement for compound 6.

compound	IC ₅₀ ª (μM)	compound	IC ₅₀ ª (μM)
	RAW264.7	compound	RAW264.7
1	29.31±0.86 μM	7	8.61±0.32 μM
2	2.55±0.49 μM	8	5.51±0.63 μM
3	0.93±0.21 μM	9	11.26±0.58 μM
4	37.61±0.74 μM	10	21.47±0.54 μM
5	29.35±0.67 μM	11	1.71±0.35 μM
6	18.73±0.68 μM	12	46.3±0.81 μM
Dexamethasone ^b		0.86 ±0.08 μM	

 Table S2 In vitro inflammatory activity of compounds 1-12.

^a Means ± S.D. From three independent experiments (n=3)

^b Positive control

Figure S1. Structures of compounds 7-12

Figure S2. HPLC spectrum of compound 1

Figure S3. IR spectrum of compound 1

Figure S4. HR-ESI-MS spectrum of compound 1

Figure S5. ¹H-NMR spectrum of compound **1** in C₅D₅N (600 MHz)

Figure S6. ¹³C-NMR spectrum of compound 1 in C₅D₅N (150 MHz)

Figure S7. DEPT spectrum of compound $\mathbf{1}$ in C_5D_5N

Figure S8. HSQC spectrum of compound 1 in C₅D₅N

Figure S9. HMBC spectrum of compound 1 in C_5D_5N

Figure S10. HPLC spectrum of compound 2

igure S11. IR spectrum of compound 2

Figure S12. HR-ESI-MS spectrum of compound 2

Figure S13. ¹H-NMR spectrum of compound 2 in C₅D₅N (600 MHz)

Figure S14. ¹³C-NMR spectrum of compound 2 in C_5D_5N (150 MHz)

Figure S15. HSQC spectrum of compound 2 in C_5D_5N

Figure S16. DEPT spectrum of compound 2 in C₅D₅N

Figure S17. HMBC spectrum of compound 2 in C_5D_5N

Figure S18. HPLC spectrum of compound 3

ure S19. IR spectrum of compound 3

Figure S20. HR-ESI-MS spectrum of compound 3

Figure S21. ¹H-NMR spectrum of compound 3 in C₅D₅N (600 MHz)

17

Figure S23. DEPT spectrum of compound 3 in C_5D_5N

Figure S24. HSQC spectrum of compound 3 in C_5D_5N

Figure S25. HMBC spectrum of compound 3 in C_5D_5N

igure S26. HPLC spectrum of compound 4

igure S27. IR spectrum of compound 4

Figure S28. HR-ESI-MS spectrum of compound 4

Figure S29. ¹H-NMR spectrum of compound 4 in C₅D₅N (600 MHz)

Figure S30. ¹³C-NMR spectrum of compound 4 in C₅D₅N (150 MHz)

Figure S31. DEPT spectrum of compound 4 in C₅D₅N

Figure S32. HSQC spectrum of compound 4 in C_5D_5N

Figure S33. HMBC spectrum of compound 4 in C_5D_5N

igure S34. HPLC spectrum of compound 5

igure S35. IR spectrum of compound 5

Figure S36. HR-ESI-MS spectrum of compound 5

Figure S37. ¹H-NMR spectrum of compound 5 in C₅D₅N (600 MHz)

Figure S38. 13 C-NMR spectrum of compound 5 in C₅D₅N (150 MHz)

Figure S39. HSQC spectrum of compound 5 in C_5D_5N

Figure S40. HMBC spectrum of compound 5 in C_5D_5N

Figure S41. HPLC spectrum of compound 6

igure S42. IR spectrum of compound 6

Figure S43. HR-ESI-MS spectrum of compound 6

Figure S44. ¹H-NMR spectrum of compound 6 in C₅D₅N (600 MHz)

Figure S45. 13 C-NMR spectrum of compound 6 in C₅D₅N (150 MHz)

Figure S47. HSQC spectrum of compound 6 in C_5D_5N

Figure S48. HMBC spectrum of compound 6 in C_5D_5N

Figure S49. NOESY spectrum of compound 6 in C_5D_5N

Figure S53. HPLC spectrum of compound 7

Figure S54. 1H-NMR spectrum of compound 7 in C₅D₅N (600 MHz)

Figure S55. 13C-NMR spectrum of compound 7 in C₅D₅N (150 MHz)

Figure S50. HPLC spectrum of compound 8

Figure S51. 1H-NMR spectrum of compound 8 in C₅D₅N (600 MHz)

Figure S52. 13C-NMR spectrum of compound 8 in C₅D₅N (150 MHz)

Figure S56. HPLC spectrum of compound 9

Figure S57. 1H-NMR spectrum of compound 9 in C₅D₅N (600 MHz)

Figure S58. 13C-NMR spectrum of compound 9 in C₅D₅N (150 MHz)

Figure S59. HPLC spectrum of compound 10

Figure S60. 1H-NMR spectrum of compound 10 in C₅D₅N (600 MHz)

Figure S61. 13C-NMR spectrum of compound 10 in C₅D₅N (150 MHz)

Figure S62. HPLC spectrum of compound 11

Figure S63. 1H-NMR spectrum of compound 11 in C₅D₅N (600 MHz)

Figure S64. 13C-NMR spectrum of compound 11 in C₅D₅N (150 MHz)

Figure S65. HPLC spectrum of compound 12

Figure S66. 1H-NMR spectrum of compound 12 in C₅D₅N (600 MHz)

Figure S67. 13C-NMR spectrum of compound 12 in C₅D₅N (150 MHz)