Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information for

Synthesis of Heterocyclic (Triazole, Furoxan, Furazan) Fused Pyridazine Di-*N*-Oxides via Hypervalent Iodine Oxidation

Qi Zhang^{*a,b*}, Chunlin He^{*a,b,c,d,*} *^{*e*} and Siping Pang^{*a,c**}

^a School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China;

^b Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China;

^c State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing

100081, China;

^d Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China;

^e Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China;

E-mail: chunlinhe@bit.edu.cn; pangsp@bit.edu.cn; pangsp@bit.edu; <a href="mailto:

Contents

I.	General information	S2
II.	Experimental procedure	S2
III.	X-Ray crystallographic data	S4
IV.	Characterization data for the products	S 11
V.	Copies of ¹ H-NMR and ¹³ C-NMR spectra	.S13
VI.	IR spectra	.S18

I. General information

All reagents were purchased from commercial sources (Energy Chemical, Adamasbeta®, J&K Scientific, Sigma-Aldrich) and used without purification unless otherwise mentioned. The products were purified by column chromatography over silica gel (200-300 size). ¹H and ¹³C Nuclear Magnetic Resonance (NMR) spectra were recorded at 25 °C on a Bruker 400 MHz, 100 MHz, and TMS was used as internal standard. Infrared spectra (IR) were obtained on a PerkinElmer Spectrum BX FT-IR instrument equipped with an ATR unit at 25 °C. Elemental analyses of C/H/N were investigated on a Vario EL III Analyzer. High resolution mass spectra (HRMS) were recorded on Thermo Scientific LTQ Orbitrap XL and Thermo Scientific Q Exactive by using ESI method. The onset decomposition temperature was recorded on TA Discovery DSC 25.

Note of Caution:

Furoxan and azide compounds are explosive substance and may explode under certain conditions. Appropriate safety precautions should be taken when preparing and handling.

II. Experimental procedure

General procedure for the synthesis of triazole-fused pyradizine di-*N***-dioxide**: In a Schlenk tube, a solution of 1,4-dioxime (2.0 mmol, 1.0 equiv), PIDA (2.4 mmol, 1.2 equiv) in acetonitrile (2 mL) was stirred for 1 h at 25 °C. Then white solid was filtered, washed with petroleum ether (5 mL) and air dried to give triazole-fused pyradizine di-*N*-dioxide.

In a Schlenk tube, a solution of 1,4-dioxime (2.0 mmol, 1.0 equiv), PIDA (2.4 mmol, 1.2 equiv) in acetonitrile (2 mL) was stirred for 1 h at 25 °C. Then saturated aq NaHCO₃ solution is added and extracted with EA (3 × 10 mL). Combined organic layers was dried over Na₂SO₄ and filtered, evacuated under vacuum. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 4/1) to give triazole-fused pyradizine di-*N*-dioxide.

General procedure for the synthesis of furoxan-fused pyradizine di-*N*-dioxide: In a Schlenk tube, a solution of 1,4-dioxime (0.5 mmol, 1.0 equiv), PIDA (0.6 mmol, 1.2 equiv) in acetonitrile (2 mL) was stirred for 30 min at 25 °C. Then saturated aq NaHCO₃ solution is added and extracted with EA (3×10 mL). Combined organic layers was dried over Na₂SO₄ and filtered, evacuated under vacuum. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to give furoxan-fused pyradizine di-*N*-dioxide.

General procedure for the synthesis of furazan-fused pyradizine di-*N*-dioxide: In a Schlenk tube, a solution of 1,4-dioxime (0.5 mmol, 1.0 equiv), PIDA (0.6 mmol, 1.2 equiv) in acetonitrile (2 mL) was stirred for 30 min at 25 °C. Then saturated aq NaHCO₃ solution is added and extracted with EA (3×10 mL). Combined organic layers was dried over Na₂SO₄ and filtered, evacuated under vacuum. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to give furazan-fused pyradizine di-*N*-dioxide.

General procedure for the synthesis of 3,4-dicarbamoyl-1,2,5-oxadiazole 2-oxide: In a Schlenk tube, 1,4-dioxime (1.0 mmol, 1.0 equiv) was added at -20 °C to a mixture of HNO₃ (d = 1.495 g/cm³,

1.0 mL, 23.7 mmol) and CF_3CO_2H (d = 1.489 g/cm³, 2.0 mL, 26.1 mmol). The reaction mixture was stirred for 10 min at this temperature, poured into crushed ice (10 g). The precipitate was filtered, washed with water and dried.

General procedure for the synthesis of 4-(azido(hydroxyimino)methyl)-3-cyano-1,2,5oxadiazole 2-oxide: To a solution of 1,4-dioxime (0.5 mmol, 1.0 equiv) in DCM (5 mL), PIDA (0.6 mmol, 1.2 equiv) was added in portion, then the mixture was stirred for 30 min at 25 °C. Saturated aq NaHCO₃ solution is added and extracted with DCM (3×10 mL). Combined organic layers was dried over Na₂SO₄ and filtered, evacuated under vacuum. The residue was purified by silica gel column chromatography ether/ethyl (petroleum acetate 10/1) to give 4-= (azido(hydroxyimino)methyl)-3-cyano-1,2,5-oxadiazole 2-oxide.

III. X-Ray crystallographic data

Crystal Structure of

4,7-dichloro-2H-[1,2,3]triazolo[4,5-d]pyridazine 5,6-dioxide (4)

(CCDC No. 2175705)

Empirical formula	C ₄ HCl ₂ N ₅ O ₂
Temperature	170.0 K
Wavelength	0.71073 Å
	a = 13.829(3) Å
	b = 7.0389(13) Å
Unit cell dimensions	c = 15.224(3) Å
	alpha = 90 deg.
	beta = 90 deg.

4,7-dichloro-[1,2,5]oxadiazolo[3,4-d]pyridazine 1,5,6-trioxide (8)

Empirical formula	C4Cl2N4O4
Temperature	150.0 K
Wavelength	0.71073 Å
	a = 9.1210(7) Å
	b = 5.9953(5) Å
TT '/ 11 1' '	c = 14.5570(12) Å
Unit cell dimensions	alpha = 90 deg.
	beta = 100.853(3) deg.
	gamma = 90 deg.
Volume	781.78 (11) Å ³
Z	4
Calculated density	2.030 g/cm ³
Absorption coefficient	0.824 mm ⁻¹
F(000)	472.0
Crystal size	0.13 x 0.06 x 0.03 mm
2Θ range for data collection	4.89 to 52.816 deg.
Reflections collected / unique	8446 / 1604 [R(int) = 0.0412]
Data / restraints / parameters	1604 / 1 / 127
Goodness-of-fit on F ²	1.076
Final R indices [I>2sigma(I)]	R1 = 0.0312, wR2 = 0.0602
Rindices (all data)	R1 = 0.0470, wR2 = 0.0681
۱۵ کو ۱۵ - (130721) ۱۳	NOMOVE FORCED Prob = 50 Temp = 150

4,7-dichloro-[1,2,5]oxadiazolo[3,4-d]pyridazine 5,6-dioxide (12)

(CCDC No. 2175701)

Empirical formula	$C_4Cl_2N_4O_3$
Temperature	150.0 K
Wavelength	0.71073 Å
	a = 8.9927(5) Å
	b = 15.7743(9) Å
Unit call dimensions	c = 21.8858(14) Å
Unit cen dimensions	alpha = 90 deg.
	beta = 90 deg.
	gamma = 90 deg.
Volume	3104.6(3) Å ³
Z	16
Calculated density	1.908 g/cm ³
Absorption coefficient	0.813 mm ⁻¹
F(000)	1760.0
Crystal size	0.12 x 0.08 x 0.05 mm
2Θ range for data collection	5.49 to 52.862 deg.
Reflections collected / unique	26541 / 3177 [R(int) = 0.0511]
Data / restraints / parameters	3177 / 581 / 316
Goodness-of-fit on F ²	1.026
Final R indices [I>2sigma(I)]	R1 = 0.0537, wR2 = 0.1241
Rindices (all data)	R1 = 0.0728, WR2 = 0.1391

3,4-dicarbamoyl-1,2,5-oxadiazole 2-oxide (14)

(CCDC No. 2175706)

Empirical formula	$C_4H_4N_4O_4$
Temperature	150.0 K
Wavelength	0.71073 Å
	a = 5.0887(16) Å
	b = 7.8054(19) Å
	c = 7.906(2) Å
Unit cell dimensions	alpha = 89.639(7) deg.
	beta = 80.847(10) deg.
	gamma = 89.131(10) deg.
Volume	309.99(15) Å ³
Z	2
Calculated density	1.844 g/cm ³
Absorption coefficient	0.166 mm ⁻¹

4-(azido(hydroxyimino)methyl)-3-cyano-1,2,5-oxadiazole 2-oxide (16)

Empirical formula	C4HN7O3
Temperature	298.0 K
Wavelength	0.71073 Å
Unit cell dimensions	a = 9.3585(14) Å
	b = 5.3944(9) Å

	c = 15.367(2) Å	
	alpha = 90 deg.	
	beta = 94.035(4) deg.	
	gamma = 90 deg.	
Volume	773.8(2) Å ³	
Z	4	
Calculated density	1.675 g/cm ³	
Absorption coefficient	0.145 mm ⁻¹	
F(000)	392.0	
Crystal size	0.12 x 0.08 x 0.05 mm	
2Θ range for data collection	4.946 to 52.874 deg.	
Reflections collected / unique	5321 / 1582 [R(int) = 0.0449]	
Data / restraints / parameters	1582 / 1 / 131	
Goodness-of-fit on F ²	1.031	
Final R indices [I>2sigma(I)]	R1 = 0.0584, wR2 = 0.1328	
Rindices (all data)	R1 = 0.1176, wR2 = 0.1638	
NOMOVE FORCED $P_{rob} = .50$ $T_{emp} = .298$ $T_{emp} = .298$		
Growth in EA/PE at room temperature		

IV. Characterization data for the products

4,7-Dichloro-*2H***-**[**1,2,3**]**triazolo**[**4,5-d**]**pyridazine 5,6-dioxide** (**4**) This compound was prepared according to the general procedure for the synthesis of triazole-fused pyradizine di-*N*-dioxide, yield 0.37 g (85%). White solid; T_{dec} : 190.7 °C; ¹H NMR (400 MHz, DMSO) δ 16.48 (s, 1H). ¹³C NMR (100 MHz, DMSO) δ 131.8, 115.9. IR (cm⁻¹) 2999, 2949, 1782, 1608, 1510, 1309, 1191, 1128, 977, 941, 907, 784, 693, 525. Elemental analysis (%) for C₄HCl₂N₅O₂ (221.99): calcd: C 21.64, H 0.45, N 31.55. Found: C 21.17, H 0.64, N 31.76.

4,7-Dichloro-2-methyl-2H-[1,2,3]triazolo[4,5-d]pyridazine 5,6-dioxide (4a) This compound was prepared according to the general procedure for the synthesis of triazole-fused pyradizine di-*N*-dioxide, yield 0.37 g (78%). Yellow solid; T_{dec} : 170.2 °C; ¹H NMR (400 MHz, DMSO) δ 4.49 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 133.7, 115.7, 44.2. Elemental analysis (%) for C₄HCl₂N₅O₂ (236.01): calcd: C 25.45, H 1.28, N 29.67. Found: C 25.07, H 1.21, N 30.02.

4,7-Dichloro-[1,2,5]oxadiazolo[3,4-d]pyridazine 1,5,6-trioxide (8) This compound was prepared according to the general procedure for the synthesis of furoxan-fused pyradizine di-*N*-dioxide. Purified on silica gel chromatography to give the product (89.6 mg, 75%) (petroleum ether/ethyl acetate = 10/1). Yellow solid; T_{dec} : 109.6 °C; ¹³C NMR (100 MHz, CD₃CN) δ 143.8, 110.0, 107.8, 105.8. IR (cm⁻¹) 1605, 1504, 1396, 1255, 1185, 1078, 977, 910, 812, 747, 687, 473. Elemental analysis (%) for C₄Cl₂N₄O₄ (238.97): calcd: C 20.10, N 23.45. Found: C 19.70, N 23.97.

4,7-Dichloro-[1,2,5]oxadiazolo[3,4-d]pyridazine 5,6-dioxide (12) This compound was prepared according to the general procedure for the synthesis of furazan-fused pyradizine di-*N*-dioxide. Purified on silica gel chromatography to give the product (80.2 mg, 72%) (petroleum ether/ethyl acetate = 10/1). Yellow solid; T_{dec} : 135.8 °C; ¹³C NMR (100 MHz, CD₃CN) δ 143.1, 108.8. IR (cm⁻¹) 1634, 1522, 1358, 1235, 985, 930, 877, 860, 743, 690, 589, 538, 433. Elemental analysis (%) for C₄Cl₂N₄O₃ (222.97): calcd: C 21.55, N 25.13. Found: C 21.83, N 24.64.

3,4-Dicarbamoyl-1,2,5-oxadiazole 2-oxide (14) Light yellow solid, 51.6 mg (31%); *T*_{dec}: 245.6°C; ¹**H NMR** (400 MHz, DMSO) δ 8.71 (s, 1H), 8.42 (s, 1H), 8.35 (s, 1H), 8.30 (s, 1H). ¹³**C NMR** (100 MHz, DMSO) δ 158.4, 155.7, 152.0, 110.6. **HRMS** (ESI) m/z calcd for C₄H₄N₄NaO₄⁺ (M+Na)⁺ 195.01248, found 195.01263.

4-(Azido(hydroxyimino)methyl)-3-cyano-1,2,5-oxadiazole 2-oxide (16) White solid, 58.5 mg (60%); *T*_{dec}: 130.9 °C; ¹H NMR (400 MHz, Acetone-d₆) δ 12.22 (s, 1H). ¹³C NMR (100 MHz, Acetone-d₆) δ 149.6, 134.9, 106.7, 96.9. **IR** (cm⁻¹) 3323, 2161, 2112, 1621, 1603, 1475, 1405, 1337, 1262, 1037, 1015, 945, 863, 823, 694, 522, 441. **Elemental analysis** (%) for C₄HN₇O₃ (195.10): calcd: C 24.63, H 0.52, N 50.26. Found: C 24.20, H 0.61, N 50.68.

V. Figures of ¹H-NMR, ¹³C-NMR spectra

¹H NMR Spectrum of **4** (DMSO, 400 MHz)

¹H NMR Spectrum of **4a** (DMSO, 400 MHz)

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0

¹³C NMR Spectrum of 8 (CD₃CN, 100 MHz)

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0

¹H NMR Spectrum of **16** (Acetone-d₆, 400 MHz)

VI. IR spectra

IR spectrum of compound 4

IR spectrum of compound 8

IR spectrum of compound 16

