Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplemental Information

Metal-ion-mediated synergistic coordination: Construction

of AIE metallogel sensor array for anions and amino acids

Hong Yao*^a, Yan-Bing Niu^a, Yin-Ping Hu^a, Xiao-Wen Sun^a, Qin-Peng Zhang^a,

You-Ming Zhang^{a,b}, Tai-Bao Wei^a and Qi Lin*^a

^[a] Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key

Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical

Engineering, Northwest Normal University, Lanzhou, Gansu, 730070. P. R. China

^[b] Gansu Natural Energy Research Institute, Lanzhou, Gansu 730046, China

* Corresponding author

* E-mail: yhxbz@126.com, linqi2004@126.com.

Table of Contents

Fig. S1 The ¹H NMR spectra of gelator **G** in CDCl₃ (400 MHz, 298K).

Fig. S2 The ¹³C NMR spectra of gelator G in CDCl₃ (600 MHz, 298K).

Fig. S3 ESI-MS spectra of gelator G.

- Fig. S4 FT-IR spectra of (a) Powder G and xerogel OG, (b) Metallogel OGCa and OGCa-I⁻, (c) Metallogel OGFe and OGFe-Trp.
- Fig. S5 XRD patterns of (a) Powder G and xerogel OG, (b) Metallogel OGCa and OGCa-I⁻, (c) Metallogel OGFe and OGFe-Trp.
- Fig. S6 (a) Images of OG and OG in the presence of 1.0 equiv. various metal ions (using their perchlorate salts as the sources) under ultraviolet light (UV) in cyclohexanol solution (5%, w/v); (b) Fluorescent spectra of OG and OGMs (λex = 365 nm).
- Fig. S7 ¹H NMR titration spectra (400 MHz, 298 K) of OG (5.0 mg) CDCl₃ (0.5ml) and DMSO-d6 (0.1ml) solution with increasing amounts of Ca²⁺(DMSO-d6, 0.1M).
- Fig. S8 SEM images of (a) Xerogel OG, (b) Metallogel OGCa, (c) Metallogel complex OGCa-I⁻, (d) Metallogel OGFe, (e) Metallogel complex OGFe-Trp.
- Fig. S9 The photograph of the linear range: (a) Metallogel OGFe with CN^- , (b) OGCa with Γ^- , (c) OGCu with Γ^- , (d) OGCu with N_3^- .
- Fig. S10 The photograph of the linear range: (a) Metallogel OGFe with L-Trp, (b)OGCo withL-His, (c) OGNi with L-Trp.
- **Fig. S11** ¹H NMR titration spectra (400 MHz, 298 K) of **OGCa** (5.0 mg) in CDCl3 (0.5mL) and DMSO- d_6 (0.1ml) solution with increasing amounts of Γ .
- **Fig. S12** Fluorescence quantum yield according to the corresponding formula (using quinoline sulfate as standard).
- Fig. S13 The fluorescence spectra of (a) OGFe which in cyclohexanol solution (5%, w/v) before and after adding with 1.0 equiv. L-Trp and D-Trp; the fluorescence spectra of (b) OGNi which in cyclohexanol solution (5%, w/v)

before and after adding with after adding with 1.0 equiv. L-Trp and D-Trp respectively ($\lambda ex = 365 \text{ nm}$).

- Fig. S14 Photographs of the fluorescence response of OG and OG in the presence of 1.0 equiv. anions and amino acids respectively at room temperature under 365 nm UV light in cyclohexanol solution (5%, w/v)
- Fig. S15 The Stern-Volmer plot of (a) Metallogel OGFe with Γ , (b) OGCa with Γ , (c) OGCu with Γ , (d) OGCu with N₃⁻ (All the metallogels are in cyclohexanol solution (5%, w/v) and adding with 1.0 equiv. Γ and N₃⁻)
- Fig. S16 The Stern-Volmer plot of (a) Metallogel OGFe with L-Trp, (b) OGCo withL-His, (c) OGNi with L-Trp. (All the metallogels are in cyclohexanol solution (5%, w/v) and adding with 1.0 equiv. Γand N₃⁻)
- **Fig. S17** Time-dependency cures of **OGCu-I** (cyclohexanol solution (5%, w/v)) with 0.076 equiv. Γ
- Table S1 Gelation behavior of gelator G in different solvents.
- Table S2 Detection limits of the metallogel OGMs for target ions or amino acids.
- **Table S3** The fluorescence quantum yield of compound OG in cyclohexanol solution(5%, w/v) in different states

Fig. S1 The ¹H NMR spectra of gelator **G** in CDCl₃ (400 MHz, 298K).

Fig. S2 The 13 C NMR spectra of gelator **G** in CDCl₃ (600 MHz, 298K).

Fig. S3 ESI-MS spectra of gelator G.

Fig. S4 FT-IR spectra of (a) Powder **G** and xerogel **OG**, (b) Metallogel **OGCa** and **OGCa-I**, (c) Metallogel **OGFe** and **OGFe-Trp**.

Fig. S5 XRD patterns of (a) Powder G and xerogel OG, (b) Metallogel OGCa and OGCa-I⁻, (c) Metallogel OGFe and OGFe-Trp.

Fig. S6 (a) Images of **OG** and **OG** in the presence of 1.0 equiv. various metal ions (using their perchlorate salts as the sources) under ultraviolet light (UV) in cyclohexanol solution (5%, w/v); (b) Fluorescent spectra of **OG** and **OGMs** ($\lambda ex = 365$ nm).

Fig. S7 ¹H NMR titration spectra (400 MHz, 298 K) of **OG** (5.0 mg) CDCl₃ (0.5ml) and DMSO- d_6 (0.1ml) solution with increasing amounts of **Ca**²⁺(DMSO-d6, 0.1M).

Fig. S8 SEM images of (a) Xerogel **OG**, (b) Metallogel **OGCa**, (c) Metallogel complex **OGCa-I**, (d) Metallogel **OGFe**, (e) Metallogel complex **OGFe-Trp**.

Fig. S9 The photograph of the linear range: (a) Metallogel OGFe with CN^{-} , (b) OGCa with Γ , (c) OGCu with Γ , (d) OGCu with N_3^{-} .

Fig. S10 The photograph of the linear range: (a) Metallogel **OGFe** with L-Trp, (b) **OGCo** withL-His, (c) **OGNi** with L-Trp.

Fig. S11 ¹H NMR titration spectra (400 MHz, 298 K) of **OGCa** (5.0 mg) in CDCl₃ (0.5mL) and DMSO- d_6 (0.1ml) solution with increasing amounts of Γ .

Fig. S12 Fluorescence quantum yield according to the corresponding formula (using quinoline sulfate as standard).

Fig. S13 The fluorescence spectra and photographs of (a) **OGFe** before and after addition of 1.0 equiv. L-Trp and D-Trp; (b) **OGNi** before and after adding of 1.0 equiv. L-Trp and D-Trp (cyclohexanol solution, 5%, w/v, $\lambda ex = 365$ nm).

Fig. S14 Photographs of the fluorescence response of **OG** and **OG** in the presence of 1.0 equiv. different anions and amino acids respectively at room temperature under 365 nm UV light in cyclohexanol solution (5%, w/v).

Fig. S15 Stern-Volmer plot of different metallogel with different anions. (a) **OGFe** with Γ , (b) **OGCa** with Γ , (c) **OGCu** with Γ , (d) **OGCu** with N_3^- in cyclohexanol

solution (5%, w/v).

Fig. S16 Stern-Volmer plot of different metallogel with different amino acids. (a) **OGFe** with L-Trp, (b) **OGCo** withL-His, (c) **OGNi** with L-Trp in cyclohexanol solution (5%, w/v).

Fig. S17 Time-dependency cures of OGCu-I (cyclohexanol solution (5%, w/v)) with 0.076 equiv. Γ .

Entry	Solvent	State ^a	CGC ^b (%)	T^{c}_{gel} (°C)
1	methanol	Р	\	\
2	ethanol	Р	/	\
4	n-butyl alcohol	G	6	47
5	n-propanol	S	\	\
6	n-hexanol	S	\	\
7	Formic acid	G	7	45
8	Acetic acid	S	\	\
9	Propanoic acid	S	\	\
10	Hexylic acid	Р	\	\
11	Butyric acid	S	\	\
12	CHCl ₃	S	\	\
13	DMF	S	\	\
14	Acetonitrile	Р	\	\
15	DMSO	Р		
16	Isopropyl alcohol	S	\	\
17	Cyclohexanol	G	5	48-50
18	Cyclohexane	Р	\	/
19	n-hexane	Р	\	\

Table S1 Gelation behavior of gelator G in different solvents.

a: G, P and S denote gelation, precipitation and solution, respectively.

b: the critical gelation concentration (5%, wt%, 10 mg/mL=1%).

c: the gelation temperature (\mathcal{C}).

Ions/amino acids	Refs	Solvent	LOD/nM
	43	DMSO	39.5
	44	DMSO/H ₂ O	77.1
CN^-	45	MeOH/H ₂ O	891.0
	46	MeOH/H ₂ O	150.0
	This work	Water solution	10.6
	47	H ₂ O/THF	487.0
NT -	48	DMSO	227.0
IN ₃	49	HEPES buffer solution	100.0
	This work	Water solution	46.6
	50	THF	7900.0
	51	Water solution	108.5
Г	52	Water solution	300.0
	53	Water solution	60.0
	This work	Water solution	3.4/5.2
	54	MeOH/ HEPES buffer solution	243.0
	55	CH ₃ CN/H ₂ O	150.0
L-Trp	56	DMSO/H ₂ O	283.0
	57	Phosphate buffer solution	5000.0
	This work	Water solution	2.4/19.2
	58	HEPES buffer solution	100.0
	59	Acetate buffer solution	20.0
L-His	60	PBS buffer solution	72.2
	61	Tris-HCL buffer solution	36.0
	This work	Water solution	2.4

 Table S2 Detection limits of the metallogel OGMs for target ions or amino acids.

Compound	State	Absorbance	Integral Area	Refractive Index	QY
quinine sulfate	solution	0.036	62346.54	1.333	0.55
00	sol	0.673	3574.787	1.478	0.000208
UG	gel	0.178	30053.29	1.478	0.065919

Table S3 The fluorescence quantum yield of **OG** in cyclohexanol solution (5%,w/v) in different states