Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information

(7,8-Dicarba-*nido*-undecaboran-7-yl)acetic acid: synthesis of individual enantiomers and the first example of determination of absolute configuration of chiral *nido*-carborane

Dmitry A. Gruzdev,* Angelina A. Telegina, Evgeny N. Chulakov, Galina L. Levit and Victor P. Krasnov

Table of contents

1. Configuration assignment of <i>nido</i> -carborane derivatives	S2
2. NMR spectra	S4
3. Selected HPLC chromatograms	S30

1. Configuration assignment of *nido*-carborane derivatives

Benzyl (S_P)-(*nido***-carboranyl)acetate, caesium salt [(S_P)-11-Cs].** Caesium fluoride (0.77 mg, 5.04 mmol) and HCl conc. (0.28 mL, 3.36 mmol) were added to a solution of benzyl (R_P)-(3-amino-*closo*-carboran-1-yl)acetate [(R_P)-9]^{S1} (0.52 g, 1.68 mmol) in BnOH (17 mL). The reaction mixture was stirred at 80 °C for 12 h. EtOAc (40 mL) was added and the solution was washed with H₂O (3 × 25 mL). Organic layer was evaporated to dryness under reduced pressure. The residue was subjected to flash column chromatography (eluent CH₂Cl₂–EtOH from 95 : 5 to 8 : 2) to afford compound (S_P)-**11-Cs** as a slow eluting component. Yield 97.8 mg (14%). Hygroscopic semisolid. NMR spectra were identical to those of compound **11-K** (see the Experimental section). HRMS ESI(–), *m/z* calcd for C₁₁H₂₀¹¹B₉O₂ [M – Cs]⁻: 283.2323, found 283.2322.

(*S*_P)-(*nido*-Carboranyl)acetic acid, potassium Salt [(*S*_P)-1-K]. Concentrated HCl (2.7 mL) was added to a solution of compound (*S*_P)-11-Cs (93 mg, 0.22 mmol) in AcOH (2.7 mL). The mixture was heated at 102-105 °C for 15 h, then evaporated to dryness under reduced pressure. 4 N HCl (7 mL) was added to the residue and the mixture was extracted with Et₂O (3 × 10 mL). Organic layers were washed with 4 N HCl (10 mL), dried with Na₂SO₄ and evaporated to dryness under reduced pressure. The residue was dissolved in ethanolic solution of KOH (0.85 N, 1.2 mL). The resulting solution was filtered, then an excess of solid CO₂ was added. The precipitate was filtered off and the filtrate was evaporated to dryness under reduced pressure. Yield 60.1 mg (99%). Hygroscopic semisolid. NMR spectra were identical to those of compound (*R*_P)-1-K obtained starting from compound (*S*,*R*_P)-7a (see the Experimental section). [α]_D²⁰ -5.0 (*c* 0.23, acetone–MeOH 4 : 1). HPLC (*S*,*S*-Whelk O1, MeOH–H₂O–AcOH–Et₃N 40.00 : 59.90 : 0.05 : 0.05, 0.75 mL/min): τ 35.48 min. HRMS ESI(-), *m/z* calcd for C₄H₁₄¹¹B₉O₂ [M – 2K + H]⁻: 193.1837, found 193.1838.

^{S1} D. A. Gruzdev, V. O. Ustinova, E. N. Chulakov, V. A. Ol'shevskaya, G. L. Levit, P. A. Slepukhin, V. P. Krasnov and V. N. Charushin, *J. Organomet. Chem.*, 2018, **876**, 50–56.

Figure S4 HPLC chromatogram of compound (S_P) -(-)-1-K obtained from amide (S, S_P) -7a

2. NMR spectra

 $^{11}B{}^{1}H$ NMR spectrum of compound **3a** (DMSO- d_6 , 25 °C, 160 MHz)

 $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of compound **3a** (DMSO- d_6 , 25 °C, 126 MHz)

¹H NMR spectrum of compound **3b** (DMSO-*d*₆, 25 °C, 500 MHz)

 $^{11}\text{B}\{^{1}\text{H}\}$ NMR spectrum of compound **3b** (DMSO- d_6 , 25 °C, 160 MHz)

 $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of compound **3b** (DMSO- d_6 , 25 °C, 126 MHz)

¹H NMR spectrum of compound **4a** (DMSO- d_6 , 25 °C, 500 MHz)

 $^{11}B{}^{1}H{}$ NMR spectrum of compound **4a** (DMSO- d_6 , 25 °C, 160 MHz)

 $^{13}C{^{1}H}$ NMR spectrum of compound **4a** (DMSO- d_6 , 25 °C, 126 MHz)

¹H NMR spectrum of compound **4b** (DMSO-*d*₆, 25 °C, 500 MHz)

 $^{11}\text{B}\{^{1}\text{H}\}$ NMR spectrum of compound **4b** (DMSO- d_6 , 25 °C, 160 MHz)

¹³C{¹H} NMR spectrum of compound **4b** (DMSO- d_6 , 25 °C, 126 MHz)

¹¹B{¹H} NMR spectrum of compound **5a** (DMSO- d_6 , 25 °C, 160 MHz)

 $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of compound **5a** (DMSO-*d*₆, 25 °C, 126 MHz)

 $^{11}\text{B}\{^{1}\text{H}\}$ NMR spectrum of compound **5b** (DMSO- d_6 , 25 °C, 160 MHz)

 $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of compound **5b** (DMSO- d_6 , 25 °C, 126 MHz)

¹H NMR spectrum of compound **5c** (DMSO- d_6 , 25 °C, 500 MHz)

 $^{11}B{}^{1}H$ NMR spectrum of compound **5c** (DMSO- d_6 , 25 °C, 160 MHz)

 $^{13}C{^{1}H}$ NMR spectrum of compound **5c** (DMSO- d_6 , 25 °C, 126 MHz)

¹H NMR spectrum of compound (*S*,*R*_P)-**7a** (DMSO- d_6 , 25 °C, 500 MHz)

Proton-coupled ¹¹B NMR spectrum of compound (S,R_P)-**7a** (DMSO- d_6 , 25 °C, 160 MHz)

Proton-coupled ¹¹B NMR spectrum of compound (*S*,*S*_P)-**7a** (DMSO-*d*₆, 25 °C, 160 MHz)

 $^{13}C{^{1}H}$ NMR spectrum of compound (*S*,*S*_P)-**7a** (DMSO-*d*₆, 25 °C, 126 MHz)

¹H NMR spectrum of compound (S, R_P)-**7b** (DMSO- d_6 , 25 °C, 500 MHz)

Proton-coupled ¹¹B NMR spectrum of compound (S,R_P)-**7b** (DMSO- d_6 , 25 °C, 160 MHz)

 $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of compound (*S*,*R*_P)-**7b** (DMSO-*d*₆, 25 °C, 126 MHz)

 $\frac{1}{3} \frac{1}{3} \frac{1}$

Proton-coupled ¹¹B NMR spectrum of compound (*S*,*S*_P)-**7b** (DMSO-*d*₆, 25 °C, 160 MHz)

 $^{13}C{^{1}H}$ NMR spectrum of compound (*S*,*S*_P)-**7b** (DMSO-*d*₆, 25 °C, 126 MHz)

¹H NMR spectrum of compound **7c** (*diastereomer I*) (DMSO- d_6 , 25 °C, 500 MHz)

Proton-coupled ¹¹B NMR spectrum of compound **7c** (*diastereomer I*) (DMSO-*d*₆, 25 °C, 160 MHz)

¹³C{¹H} NMR spectrum of compound **7c** (*diastereomer I*) (DMSO-*d*₆, 25 °C, 126 MHz)

Proton-coupled ¹¹B NMR spectrum of compound **7c** (*diastereomer II*) (DMSO-*d*₆, 25 °C, 160 MHz)

¹³C{¹H} NMR spectrum of compound **7c** (*diastereomer II*) (DMSO-*d*₆, 25 °C, 126 MHz)

 $^{11}\text{B}\{^{1}\text{H}\}$ NMR spectrum of compound **8** (DMSO- d_6 , 25 °C, 160 MHz)

 13 C{ 1 H} NMR spectrum of compound **8** (DMSO- d_{6} , 25 °C, 126 MHz)

Proton-coupled ¹¹B NMR spectrum of compound **1-K** (DMSO- d_6 , 25 °C, 160 MHz)

 $^{13}C{^{1}H}$ NMR spectrum of compound **1-K** (DMSO-*d*₆, 25 °C, 126 MHz)

¹H NMR spectrum of compound **11-K** (DMSO- d_6 , 25 °C, 500 MHz)

Proton-coupled ¹¹B NMR spectrum of compound **11-K** (DMSO- d_6 , 25 °C, 160 MHz)

 $^{13}C{^{1}H}$ NMR spectrum of compound **11-K** (DMSO- d_6 , 25 °C, 126 MHz)

 $^{11}B{H}$ NMR spectrum of compound **15** (DMSO- d_6 , 25 °C, 160 MHz)

 $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of compound **15** (DMSO- d_6 , 25 °C, 126 MHz)

3. Selected HPLC chromatograms

HPLC chromatogram of compound **7a** (*diastereomeric mixture*) (Chiralcel OD-H, *n*-hexane–*i*PrOH–MeOH 5 : 0.8 : 0.2, 1 mL/min)

HPLC chromatogram of compound (S,R_P) -**7a** (Chiralcel OD-H, *n*-hexane–*i*PrOH–MeOH 5 : 0.8 : 0.2, 1 mL/min)

HPLC chromatogram of compound (S, S_P) -**7a** (Chiralcel OD-H, *n*-hexane–*i*PrOH–MeOH 5 : 0.8 : 0.2, 1 mL/min)

HPLC chromatogram of compound **7b** (*diastereomeric mixture*) (Chiralcel OD-H, *n*-hexane–*i*PrOH–MeOH 50 : 4 : 2, 1 mL/min)

HPLC chromatogram of compound (S,R_P) -**7b** (Chiralcel OD-H, *n*-hexane–*i*PrOH–MeOH 50 : 4 : 2, 1 mL/min)

HPLC chromatogram of compound (S,S_P) -**7b** (Chiralcel OD-H, *n*-hexane–*i*PrOH–MeOH 50 : 4 : 2, 1 mL/min)

Signal 3: DAD1 D, Sig=230,8 Ref=off

Peak RetTime Type	Width Area	Height	Area
# [min]	[min] [mAU*s]	[mAU]	%
1 25.539 BB	0.6414 2887.20117	61.75583	62.3654
2 28.150 MM	0.8488 1742.29187	34.21258	37.6346
Totals :	4629.49304	95.96841	
	*** End of	======================================	

HPLC chromatogram of compound **15** (Chiralcel OD-H, *n*-hexane–*i*PrOH–CF₃CO₂H 5 : 1 : 0.02, 1 mL/min)