Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information

Piperazine-1,4-diol (PipzDiol): Synthesis, Stereodynamics and Assembly of Supramolecular Hydrogen-Bonded 2D Networks

Vladislav K. Lesnikov,^a Yulia V. Nelyubina,^b Alexey Yu. Sukhorukov^{a,*}

^a N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Leninsky

prospect, 47, Moscow, Russian Federation

^b A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences,

119991, Vavilova str. 28, Moscow, Russian Federation

* Corresponding author: sukhorukov@ioc.ac.ru

Table of contents

General information and instrumentation	S2
Synthesis and characterization of products	S3
Spectra of products	S12
Dynamic NMR	S55
DFT calculations	S63
X-Ray analysis	S73

General information and instrumentation

All reactions were carried out in oven-dried (150°C) glassware. CH_2Cl_2 , $CHCl_3$, pyridine and DMF were distilled over CaH_2 ; ether and methanol were distilled without drying agents. Piperazine, anhydrous dibenzoyl peroxide, Luperox[®] LP (Lauroyl peroxide), organic acids and all inorganic reagents were commercial grade and used as received.

NMR spectra were recorded at indicated temperatures with a Bruker Avance 300 and 600 spectrometers with residual solvent peaks as internal standards.¹ Multiplicities are indicated by s (singlet), d (doublet), m (multiplet), and br (broad). Data acquisition and processing were performed with Topspin 4.1.3 and Mestrenova 12.0.0 software, respectively.

Melting points were determined on a Kofler heating stage and were not corrected. HRMS experiments were performed on a mass-spectrometer with electrospray ionization and a time-of-flight (TOF) detector. Peaks in FT-IR spectra data are reported in cm⁻¹ with the following relative intensities: s (strong), m (medium), w (weak), br (broad), sh (shoulder). Elemental analysis is average of two combustions. Analytical thin-layer chromatography was performed on silica gel plates with QF 254. Visualization was accomplished with UV light, solution of ninhydrin in ethanol, Dragendorff's reagent solution and iodine absorbed on silica gel.

For details of other methods see corresponding sections.

¹ Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* **2010**, *29* (9), 2176–2179.

Synthesis and characterization of products

Reaction of piperazine with dibenzoyl peroxide

Into the Schlenk tube were placed Cs_2CO_3 (6 equiv., 69.7 mmol, 22.7 g), anhydrous Bz_2O_2 (4 equiv., 46.4 mmol, 11.3 g) and CH_2Cl_2 (112 mL) under argon atmosphere and the mixture was stirred for 15 min. Then, a solution of piperazine (1 equiv., 11.6 mmol, 1.0 g) in CH_2Cl_2 (44 mL) was added. The mixture was stirred under reflux 8 hours (TLC control). After cooling to rt, 95 mL of water was added and the mixture was stirred for additional 15 min. Organic phase was separated, aqueous layer was washed with CH_2Cl_2 (2×155 mL). Combined organic extracts were washed with brine, dried over anhydrous Na_2SO_4 and concentrated in vacuum. The residue was triturated with Et_2O to remove most of unreacted dibenzoyl peroxide. The residual solid was dissolved in CH_2Cl_2 , pre-adsorbed on silica gel and subjected to a column chromatography on silica gel (eluent EtOAc–hexane, 1 : 9 \rightarrow 1 : 3) to give 2.3 g (61 %) of product **3a**. Further elution with EtOAc–hexane (1 : 1) gave 0.32 g (9 %) of side product **4a**.

1,4-Dibenzoyloxypiperazine (3a)

White powder. $R_f = 0.5$ (hexane–EtOAc, 1:1). Mp 143 – 144 °C.

¹H NMR (300 MHz, CDCl₃, 300 K, HSQC, mixture of conformers/invertomers): δ 8.03 (d, J = 7.5 Hz, 4H, 2 *o*-Ph), 7.59 (t, J = 7.5 Hz, 2H, 2 *p*-Ph), 7.46 (t, J = 7.5 Hz, 4H, 2 *m*-Ph), 3.56 and 3.36 (2 br m, 8H, 4 CH₂).

¹³C NMR (75 MHz, $CDCI_3$, 300 K, HSQC, mixture of conformers/invertomers): δ 164.6 (2 C=O), 133.4 (2 *p*-Ph), 129.6 (4 *o*-Ph), 129.1 (2 *i*-Ph), 128.6 (4 *m*-Ph), 54.4 and 53.0 (2 br, 4 CH₂).

ESI-HRMS m/z: [M+H]⁺ Calcd for [C₁₈H₁₉N₂O₄]⁺ 327.1339; Found 327.1336.

1-(Benzoyl)-4-(benzoyloxy)piperazine (4a)

White powder. $R_f = 0.32$ (hexane–EtOAc, 1:1). Mp 132 – 135 °C.

¹H NMR (300 MHz, CDCl₃, 300 K, HSQC, mixture of conformers/invertomers): δ 8.04 – 7.99 (m, 3H, *p*-Bz_N and *o*-Bz_O), 7.61 – 7.56 (m, 1H, *p*-Bz_O), 7.49 – 7.43 (m, 6H, *o*-Bz_N, *m*-Bz_N and *m*-Bz_O), 3.54, 3.37 and 2.99 (3 br m, 8H, 4 CH₂).

¹³C NMR (75 MHz, CDCl₃, 300 K, HSQC, mixture of conformers/invertomers): δ 170.4 (O–C=O), 164.5 (N–C=O), 135.1 and 133.4 (2 *p*-Ph), 130.1 and 128.9 (2 *i*-Ph), 129.5, 128.6, 128.5 and 127.1 (4 *o*-Ph and 4 *m*-Ph), 56.0 (4 CH₂N).

ESI-HRMS m/z: $[M+H]^+$ Calcd for $[C_{18}H_{19}N_2O_3]^+$ 311.1390; Found 311.1390.

Synthesis of adamantane-1-carboxylic peroxyanhydride (adamatoyl peroxide)²

Adamantane-1-carboxylic acid (1 equiv., 5.55 mmol, 1.0 g) was dissolved in 22 mL of dry DMF and cooled under stirring on ice-bath. Oxalyl chloride (3 equiv., 16.64 mmol, 2.11 g) was added dropwise while the temperature of mixture was below 35°C. After addition the mixture was stirred additional hour at rt. The solvent was removed under reduced pressure and the residual was re-dissolved in 10 mL of ether and cooled under stirring on ice-bath. Hydrogen peroxide (27%, 0.75 equiv., 4.23 mmol, 533 mg) and pyridine (1.2 equiv., 6.76 mmol, 0.545 mL) were consequently added dropwise while the temperature of mixture was below 30°C. After addition the mixture was stirred additional 1 hour at rt. Then, the mixture was diluted with 10 mL of ether, washed with 20 mL of 3.5% solution of HCl in distilled water, 3×20 mL sat. NaHCO₃ solution, and then with water until the neutral pH was achieved. Organic phase was dried by Na₂SO₄. Crude product was obtained by solvent evaporation with 86% yield (2.42 mmol, 0.87 g) and was used in the next step without further purification due to instability.

Reaction of piperazine with adamatoyl peroxide

Into the Schlenk tube were placed Cs_2CO_3 (6 equiv, 2.51 mmol, 817 mg) and a solution of adamatoyl peroxide (4 equiv., 1.67 mmol, 600 mg) in CH_2Cl_2 (6 mL) under argon atmosphere. Then, a solution of piperazine (1 equiv., 0.42 mmol, 36 mg) in CH_2Cl_2 (2 mL) was added. The mixture was stirred at rt for overnight (TLC control). Then, 6 mL of water was added and the mixture was stirred additional 10 min. Organic phase was separated, aqueous layer was washed with CH_2Cl_2 (2×12

² Beckwith, A. L. J., Cross, R. T., Gream, G. E. The mechanism of lead tetraacetate decarboxylation. I. Tertiary carboxylic acids. *Australian J. Chem.*, **1974**, *27* (8), 1673–1692.

mL). Combined organic extracts were washed with brine, dried over anhydrous Na_2SO_4 and concentrated in vacuum. The residue was subjected to a column chromatography on silica gel (eluent EtOAc-hexane, $1:9 \rightarrow 1:5 \rightarrow 1:1$) to give 108 mg (58 %) of product **3b**. Further elution with EtOAc–MeOH (7:1) gave 12 mg (7 %) of side product **4b**.

1,4-(1-Adamantoyl)oxypiperazine (3b)

White powder. $R_f = 0.5$ (hexane : EtOAc, 1:1). Mp > 250 °C (without decomposition).

¹H NMR (300 MHz, CDCl₃, 298 K, HSQC): δ 3.63 (s, 8H, 4 CH₂N), 2.01 (s, 6H, CH), 1.95 (br s, 12H, CH₂), 1.69 (br s, 12H, CH₂).

¹³C NMR (75 MHz, CDCl₃, 298 K, HSQC): δ 176.1 (2 C=O), 45.5 (4 CH₂N), 41.8 (2 C), 39.1 (6 CH₂), 36.6 (6 CH₂), 28.4 (6 CH).

FT-IR (KBr): 2907 (s), 2849 (s), 2676 (w), 2656 (w), 1725 (w), 1614 (s, C=O), 1547 (w), 1447 (m), 1416 (s), 1365 (w), 1343 (w), 1316 (w), 1280 (m), 1260 (m), 1226 (s), 1181 (m), 1163 (w), 1100 (w), 1045 (w), 1011 (s), 975 (w), 943 (w), 806 (w), 723 (w), 648 (w), 575 (w), 481 (w), 458 (w).

ESI-HRMS m/z: $[M+H]^+$ Calcd for $[C_{26}H_{39}N_2O_4]^+$ 443.2904; Found 443.2895.

1-(1-Adamantoyl)-4-(1-adamantoyl)oxypiperazine (4b)

Pale-yellow semi-solid.

¹H NMR (300 MHz, CDCl₃, 298 K, HSQC): δ 3.67 (s, 8H, CH₂N), 2.04 (br m, 6H, 6 CH), 1.99 and 1.91 (2 br m, 12H and 12H, 6 CH₂), 1.72 (br m, 24H, 6 CH₂).

¹³C NMR (75 MHz, CDCl₃, 298 K, HSQC): δ 176.3 (C=O), 45.7 (4 CH₂N), 41.9 (C), 40.6 (C), 39.2 (3 CH₂), 38.7 (3 CH₂), 36.7 (3 CH₂), 36.6 (3 CH₂), 28.6 (3 CH), 28.0 (3 CH) (amide carbon is not observed).

FT-IR (KBr): 2927 (s), 2853 (s sh), 2659 (m br), 2635 (m sh), 2248 (w), 1696 (s, sh, C=O), 1609 (s, sh, C=O), 1452 (s), 1416 (s), 1345 (w), 1320 (w), 1280 (s), 1245 (s), 1219 (s), 1180 (s), 1103 (m), 1081 (m), 1046 (m), 1011 (s), 975 (m), 916 (s), 816 (w sh), 732 (s), 661 (w, sh), 552 (w), 530 (w), 508 (w), 454 (w).

ESI-HRMS m/z: $[M+H]^+$ Calcd for $[C_{26}H_{39}N_2O_3]^+$ 427.2955; Found 427.2962.

Reaction of piperazine with lauroyl peroxide

Into the Schlenk tube were placed Cs_2CO_3 (6 equiv., 1.02 mmol, 332 mg), dodecanoic peroxyanhydride (4 equiv., 0.68 mmol, 270 mg) and CH_2Cl_2 (2.5 mL) under argon atmosphere and the mixture was stirred for 15 min. Then, a solution of piperazine (1 equiv., 0.17 mmol, 15 mg) in CH_2Cl_2 (0.5 mL) was added. The mixture was stirred at rt overnight (TLC control). Then, 1.5 mL of water was added and the mixture was stirred additional 15 min. Organic phase was separated, aqueous layer was washed with CH_2Cl_2 (2×2.5 mL). Combined organic extracts were washed with brine, dried over anhydrous Na_2SO_4 and concentrated in vacuum. The residue was subjected to a column chromatography on silica gel (eluent EtOAc–hexane, 1 : 7) to give 28 mg (34 %) of product **3c**. Further elution with EtOAc–hexane (1 : 3) gave 11 mg (13 %) of side product **4c**.

Piperazine-1,4-diyl didodecanoate (3c)

Pale-yellow semi-solid. $R_f = 0.7$ (hexane : EtOAc, 1:1).

¹H NMR (300 MHz, CDCl₃, 300 K, HSQC, mixture of conformers/invertomers): δ 3.32 and 3.09 (2 br m, 8H, 4 CH₂N), 2.27 (t, *J* = 7.5 Hz, 4H, 2 CH₂-C(O)), 1.62 (br q, *J* = 7.3 Hz, 4H, 2 CH₂), 1.26 (br m, 32H, 16 CH₂), 0.87 (t, *J* = 6.5 Hz, 6H, 2 CH₃).

¹³C NMR (75 MHz, CDCl₃, 300 K, HSQC, mixture of conformers/invertomers): δ 171.8 (2 C=O), 54.4 and 52.6 (2 br, 4 CH₂N), 33.1 (2 CH₂-C(O)), 32.0, 29.7, 29.6, 29.5, 29.3, 29.2, 25.2 and 22.8 (18 CH₂), 14.2 (2 CH₃).

ESI-HRMS m/z: $[M+H]^+$ Calcd for $[C_{28}H_{54}N_2O_4Na]^+$ 505.3976; Found 505.3974.

1-(Dodecanoyl)-4-(dodecanoyloxy)piperazine (4c)

Pale-yellow oil. R_f = 0.5 (hexane : EtOAc, 1:1).

¹H NMR (300 MHz, CDCl₃, 301 K, HSQC, COSY, mixture of conformers/invertomers): δ 4.44, 3.78, 3.48 and 3.13 (4 br m, 4H, CH₂N-2 and CH₂N-2'), 3.34 and 2.74 (2 br m, 4H, CH₂N-3 and CH₂N-3'), 2.34 – 2.24 (m, 4H, CH₂-5 and CH₂-5'), 1.65 – 1.60 (br m, 4H, CH₂-6 and CH₂-6'), 1.25 (br s, 32H, CH₂), 0.88 (t, *J* = 6.4 Hz, 6H, 2 CH₃).

¹³C NMR (75 MHz, CDCl₃, HSQC, 298 K, mixture of conformers/invertomers): δ 171.81 and 171.78 (2 C=O), 56.1 and 55.8 (CH₂N-3 and CH₂N-3'), 43.8 and 40.0 (CH₂N-2 and CH₂N-2'), 33.3 and 33.1 (CH₂-5 and CH₂-5'), 32.0 (2 CH₂), 29.8 (2 CH₂), 29.7 (2 CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.6 (2 CH₂), 29.5 (2 CH₂), 29.3 (CH₂), 29.2 (CH₂), 25.4 and 25.1 (CH₂-6 and CH₂-6'), 22.8 (2 CH₂), 14.3 (2 CH₃).

FT-IR (KBr): 2957 (m), 2920 (s), 2851 (s), 2387 (br, w), 2348 (w), 2292 (br, w), 1752 (m, C=O), 1645 (s, C=O), 1468 (m), 1455 (m), 1375 (w), 1278 (w), 1246 (w), 1219 (w), 1194 (w), 1143 (w), 1112 (w), 1081 (w), 1029 (s), 721 (w), 660 (br, w), 584 (br, w), 494 (br, w), 419 (w).

ESI-HRMS m/z: $[M+H]^+$ Calcd for $[C_{28}H_{55}N_2O_4]^+$ 467.4207; Found 467.4200.

Synthesis of 1,4-dihydroxypiperazine (PipzDiol 2)

Standard procedure. To a solution of 1,4-dibenzoyloxypiperazine **3a** (1.0 equiv, 772 mg, 2.37 mmol) in dry $CHCl_3$ (40 mL) was added hydrazine hydrate (10 equiv, 1.18 g, 23.6 mmol) under inert atmosphere. Reaction was refluxed until full

conversion of substrate **3a** was achieved (4 h, TLC control). Then, volatiles were removed under reduced pressure, and the residue was dried at ca. 0.5 Torr until constant weight to remove water and hydrazine. The resulting solid was triturated with $CHCl_3$ (7×10 mL) and dried in vacuum. In result, 235 mg (84 %) of PipzDiol **2** was obtained.

Larger scale synthesis. To a solution of 1,4-dibenzoyloxypiperazine **3a** (1 equiv, 1.84 g, 5.64 mmol) in dry CHCl₃ (94 mL) was added hydrazine hydrate (10 equiv, 2.82 g, 56.4 mmol) under inert atmosphere. Reaction was refluxed until full conversion of substrate **3a** was achieved (6 h, TLC control). Then, volatiles were removed under reduced pressure, and the residue was dried at ca. 0.5 Torr until constant weight to remove water and hydrazine. The resulting solid was triturated with CHCl₃ (7×20 mL) and dried in vacuum. In result, 235 mg (84 %) of PipzDiol **2** was obtained. In result, 396 mg (60 %) of PipzDiol **2** was obtained.

Pale grey solid. Mp = 205-207 °C (with decomposition).

At room temperature in solution (DMSO- d_6 or D_2O), a dynamic mixture of *trans-*2/*cis-*2 stereoisomers (ratio 2.2 : 1) is observed by NMR. Upon heating a coalescence of signals is observed (see section Dynamic NMR for details).

Major isomer (trans-2):

¹H NMR (300 MHz, DMSO-*d*₆, 300 K, HSQC): δ 7.93 (br s, 2H, OH), 2.95 (br d, 4H, CH₂N), 2.51 (br d, 4H, CH₂N).

¹³C NMR (75 MHz, DMSO-*d*₆, 300 K): δ 56.9 (CH₂N).

¹H NMR (300 MHz, D₂O, 298 K, HSQC, COSY, NOESY): δ 3.21 (br d, *J* = 7.4 Hz, 4H, CH₂N), 2.72 (br d, *J* = 7.5 Hz, 4H, CH₂N).

¹³C NMR (75 MHz, D₂O, 300 K): δ 55.8 (CH₂N).

Minor isomer (cis-**2**):

¹H NMR (300 MHz, DMSO-*d*₆, 300 K, HSQC): δ 7.93 (br s, 2H, OH), 2.75 (br m, 8H, CH₂N).

¹H NMR (300 MHz, D₂O, 298 K, HSQC, COSY, NOESY): 3.14 – 3.01 (br m, 4H, CH₂N), 3.00 – 2.95 (br m, 4H, CH₂N).

¹³C NMR (75 MHz, D₂O, 300 K): 52.3 (br, CH₂N).

FT-IR: 3434 (br, w), 3244 (br, w), 3055 (w), 2976 (w), 2907 (w), 2863 (m), 1616 (br, w), 1463 (s), 1412 (m), 1359 (m), 1267 (s), 1106 (s), 1078 (w), 1062 (s), 953 (s), 819 (s), 778 (s), 622 (s), 464 (s).

Anal. calcd for **2**•(1/6)H₂O: C, 39.66; H, 8.60; N, 23.13. Found: C, 39.59; H, 8.50; N, 23.24.

ESI-HRMS m/z: $[M-H]^{+}$ Calcd for $[C_4H_{11}N_2O_2]^{+}$ 119.0815; Found 119.0819.

1,4-Dihydroxypiperazine-1,4-diium sulfate $[H_2(2)]^{2+}[SO_4]^{2-}$

Into a round bottom flask were placed 1.4-dihydroxypiperazine **2** (1 equiv, 20 mg, 0.17 mmol), H₂O (1 mL) and MeOH (1 mL). Sulfuric acid (2 equiv, 94 %, 35 mg, 0.02 mL, 0.34 mmol) was added dropwise. After the addition of H₂SO₄ the precipitate immediately formed. The mixture was heated to reflux (most of the precipitate dissolved) and filtered. The solution was kept at ca. 5 °C, and the resulting crystals of salt $[H_2(2)]^{2+}[SO_4]^{2-}$ were collected (27 mg, 74 % yield). The crystals were used for X-Ray analysis (see section X-Ray analysis for details).

Colorless crystals. Mp = 191-192 °C (MeOH/H₂O, with decomposition).

At room temperature in D_2O solution a dynamic mixture of *trans/cis* stereoisomers is observed (ratio 1 : 1.2).

Major isomer (trans):

¹H NMR (300 MHz, D₂O, 300 K, HSQC): δ 3.70 – 3.62 (br m, 8H). ¹³C NMR (75 MHz, D₂O, 298 K): δ 50.7 (CH₂N).

Minor isomer (cis):

¹H NMR (300 MHz, D₂O, 300 K, HSQC): δ 4.02 (br d, *J* = 10.4 Hz, 4H, CH₂N), 3.51 (br d, *J* = 10.4 Hz, 4H, CH₂N).

¹³C NMR (75 MHz, D₂O, 298 K): δ 48.9 (br CH₂N).

FT-IR (KBr): 3437 (br w), 3026 (w), 2987 (w), 2608 (br w), 2511 (br), 1639 (br), 1549 (m), 1482 (m), 1458 (m), 1383 (w), 1332 (w), 1297 (w), 1236 (m), 1198 (s), 1110 (s), 1035 (s), 1001 (s), 957 (s), 877 (m), 829 (m), 703 (w), 638 (s), 596 (s), 494 (w), 452 (w), 433 (m).

1,4-Dihydroxypiperazine-1,4-diium oxalate monohydrate $[H_2(2)]^{2+}[Ox]^{2-} \bullet H_2O$

Into a round bottom flask were placed 1.4-dihydroxypiperazine **2** (1 equiv, 15 mg, 0.127 mmol), H₂O (0.5 mL) and MeOH (0.5 mL). Then, a solution of oxalic acid dihydrate (1 equiv, 16 mg, 0.127 mmol) in MeOH/H₂O (0.5 mL/0.5 mL) was added. The precipitate was immediately formed. The mixture was heated to reflux (most of the precipitate dissolved) and filtered. The solution was kept at ca. 5 °C, and the resulting crystals of salt $[H_2(2)]^{2+}[Ox]^{2-} \bullet H_2O$ were collected (13 mg, 45 % yield). The crystals were used for X-Ray analysis (see section X-Ray analysis for details).

Colorless crystals. Mp = 182-183°C (MeOH/H₂O, with decomposition).

At room temperature in D_2O solution a dynamic mixture of *trans/cis* stereoisomers is observed (ratio 1.1 : 1.0).

Major isomer (cis):

¹H NMR (300 MHz, D₂O, 298 K, HSQC): δ 3.57 – 3.50 (br m, 4H, CH₂N), 3.45 – 3.39 (br m, 4H, CH₂N).

¹³C NMR (75 MHz, D₂O, 298 K): δ 165.6 (CO), 51.2 (br CH₂N).

Minor isomer (trans):

¹H NMR (300 MHz, D₂O, 298 K, HSQC): δ 3.72 (br d, *J* = 10.1 Hz, 4H, CH₂N), 3.21 (br d, *J* = 10.1 Hz, 4H, CH₂N).

¹³C NMR (75 MHz, D₂O, 298 K): δ 165.6 (CO), 51.2 (br CH₂N).

Adduct of 1,4-dihydroxypiperazine and 4-aminobenzoic acid 2•2PABA

Into a round bottom flask were placed 1.4-dihydroxypiperazine **2** (1 equiv, 20 mg, 0.17 mmol), H_2O (0.5 mL) and MeOH (0.5 mL). Then, a solution of 4-aminobenzoic acid (2 equiv, 46 mg, 0.34 mmol) in MeOH/ H_2O (0.5 mL/0.5 mL) was added. The mixture was heated to reflux and filtered. The solution was kept at ca. 5 °C, and the resulting needle crystals of adduct **2**•2PABA were collected (41 mg, 62 %). The crystals were used for X-Ray analysis (see section X-Ray analysis for details).

Colorless crystals. Mp = 159-160 °C (MeOH/H₂O, with decomposition).

Upon dissolution of **2**•2PABA in DMSO-d₆, dissociation to 1,4-dihydroxypiperazine and *p*-aminobenzoic acid was observed by ¹H and ¹³C NMR.

S20

S24

													1			
Haddoorland Maddaa	101714/arrogen/jivapol	lynhulleutyaeutyly	uqya, haqid adi q ilayaya	, http://www.angle.com	-ro Millionithilitiki	nik (olu Aralamia	uww.www.www.	nyn (m (Manwardony) VI	(vinvinvininumi/ty	Addillour Annachada	na huyova hydrau	vonakrower Wall Lepita	haran nyaraharan ya	Whater and the second	Nilewoodky Million gala	n na sana ang ang ang ang ang ang ang ang ang
				F	}∱0											
				F-												
	R 75.50M	Hz, CDC	13, 298.0	K							45.0	1239.1 239.1 238.7 36.7 36.7 36.6	$\sim \frac{28.5}{27.9}$			

1H Selective NOE NMR 600.13MHz, D2O, 282.9K	2.95 2.94 2.73 2.73	2.47 2.46
	RI	\sim

13C NMR 75.50MHz, D2O, 298.0K

HO^{NH⁺} HO^{NH⁺} HO^{NH⁺}

[H₂(**2**)]²⁺[SO₄]²⁻

HO

— 51.18

Dynamic NMR

Full line shape analysis was carried out using TopSpin 4.1.3 DNMR (Dynamic NMR) Lineshape Fitting module. The following model was used with subsequent optimization of the parameters until the best overlap of the simulated and real spectra was achieved by more than 93% (see tables below):

Fixed Spectroscopic Model Parameters					Refined Spectroscopic Model Parameters										
	DMSO	-d ₆		D ₂ O				DN	ISO-d	6			D ₂ O		
NEXP	1			1			CONC1	4,6E+11				8,0E+11			
NTASK	3			3			CONCD1	5,9E+09				8,4E+09			
NR	1			1			CONCF1	1				1			
NAT	2	2	1	2	2	1	LB1	0				0			
NMOL	1	1	1	1	1	1	LBD1	0				0			
NREAC	1	1	1	1	1	1	LBF1	1				1			
FORCEX	1	1	1	1	1	1	DISO1	3	3			3	3		
LBGROUP	0	0	0	0	0	0	DISOD1	0	0			0	0		
VL	300			300			DISOF1	1	1			1	1		
O1PSR	6			6			SCJ1	0	-6	-6	0	0	8	8	0
F1P	3			5			SCJD1	0	0	0	0	0	0	0	0
F2P	2			2			SCJF1	0	1	1	0	0	1	1	0
IY	5,3E+09			2,1E+10			DELTAH1	60				10			
B1	1			1			DELTAHD1	1				0			
B2	0			0			DELTAHF1	1				1			
PSPIN1	1	1		1	1		DELTAS1	60				10			
MOAT1	1	1		1	1		DELTASD1	1				0			
NXCHG1	2			2			DELTASS1	1				1			
KGROUP1	0			0			MOLX1	1				1			
KAPPAX1	1			1			MOLXD1	0				0			
XFROM1	1	2		1	2		MOLXF1	0				0			

Table S1. Fitting model for full line shape analysis.

XTO1	2	1	2	1	CONC2	1,2E+11				3,8E+11			
COEF1	-1		-1		CONCD2	5,4E+08				3,1E+09			
XGROUP1	0		0		CONCF2	1				1			
PSPIN2	1	1	1	1	LB2	10				10			
MOAT2	1	1	1	1	LBD2	0				0			
NXCHG2	2		2		LBF2	1				1			
KGROUP2	0		0		DISO2	3	3			3	3		
КАРРАХ2	1		1		DISOD2	0	0			0	0		
XFROM2	1	2	1	2	DISOF2	1	1			1	1		
XTO2	2	1	2	1	SCJ2	0	-3	-3	0	0	10	10	0
COEF2	-1		-1		SCJD2	0	0	0	0	0	0	0	0
XGROUP2	0		0		SCJF2	0	1	1	0	0	1	1	0
PSPIN3	3		1		DELTAH2	123				19			
MOAT3	1		1		DELTAHD2	6				0			
NXCHG3	2		2		DELTAHF2	1				1			
KGROUP3	0		0		DELTAS2	123				19			
КАРРАХЗ	1		1		DELTASD2	6				0			
XFROM3	1	1	1	1	DELTASS2	1				1			
XTO3	1	1	1	1	MOLX2	1				1			
COEF3	-1		-1		MOLXD2	0				0			
XGROUP3	0		0		MOLXF2	0				0			
END					CONC3	8,0E+08				8,5E+11			
					CONCD3	3,8E+06				7,2E+09			
					CONCF3	1				1			
					LB3	12				10			
					LBD3	0				0			
					LBF3	1				1			
					DISO3	3				5			
					DISOD3	0				0			

		DISOF3	1	1		
		SCJ3	0	0		
		SCJD3	0	0		
		SCJF3	0	0		
		DELTAH3	50	50		
		DELTAHD3	0	0		
		DELTAHF3	0	0		
		DELTAS3	50	50		
		DELTASD3	0	0		
		DELTASS3	0	0		
		MOLX3	1	1		
		MOLXD3	0	0		
		MOLXF3	0	0		
		END				

Table S2. Full line shape analysis for spectra in D_2O

		System	1		System 2				Best
т, к	AT	ОМ	k[Hz]	∆G‡, cal/mol	ATOM		k[Hz]	ΔG^{\ddagger} , cal/mol	overlap, %
	1	2	1 <	⇔ 2	1	2	1 •	⇔ 2	
288,15	3.0021	2.5137	6.73392	15757	2.8948	2.7813	22.778	15059	93,01
298,15	3.1327	2.643	11.4644	16004	3.0281	2.9019	32.8346	15384	95,79
308,15	3.2037	2.7131	17.2686	16311	3.1018	2.9712	46.9927	15699	94,08
318,15	3.3021	2.8109	27.7688	16561	3.2147	3.0599	67.2526	16002	96,71
328,15	3.3962	2.907	57.9362	16623	3.3475	3.1411	124.74	16123	97,14
338,15	3.4974	3.0386	99.2219	16788	3.525	3.2508	152.777	16498	94,37

Table S3. Full line shape analysis for spectra in DMSO-d6

		System	1			System 2	2		Bost
т, к	ATOM		k[Hz]	∆G‡, cal/mol	AT	MC	k[Hz]	∆G‡, cal/mol	overlap, %
	1	2	$1 \leftrightarrow 2$		1	2	1 <	⇔ 2	
298,15	2.9667	2.5166	60.1092	15025	2.9749	2.7371	123.307	14599	98.36
338,15	3.0224	2.4841	404.935	15843	3.0647	2.7142	510.819	15687	97.87

Conformations search

Conformational search was performed with meta-dynamics driven search algorithm CREST v2.11.2³ using GFN2-xtb semiempirical tight-binding method⁴ implemented in XTB v6.4.1 program. Resulting molecular ensemble was sorted using CENSO v.1.2.0 code⁵ and ORCA v.5.0.3⁶ quantum chemistry package. CENSO routine consisted of:

part0: b97-d3/def2-SV(P) // GFNn-xTB (Input geometry)

part1: r2scan-3c + SMD[chcl3] + GmRRHO(GFN2[alpb]-bhess) // GFNn-xTB (Input geometry)

part2: r2scan-3c + SMD[chcl3] + GmRRHO(GFN2[alpb]-bhess) // r2scan-3c[SMD]

part3: pw6b95-d4/def2-TZVPD + SMD[chcl3] + GmRRHO(GFN2[alpb]-bhess) // r2scan-3c[SMD]

DFT calculation of thermodynamic parameters and nitrogen inversion barrier

DFT calculations were performed with the Gaussian 16 Rev C.01.⁷ M11 DFT functional with Def2TZVP basis set was used for geometry optimization, calculations of thermodynamics and kinetics. Calculations were performed in

³ Pracht, P.; Bohle, F.; Grimme, S. Automated Exploration of the Low-Energy Chemical Space with Fast Quantum Chemical Methods. *Phys. Chem. Chem. Phys.* **2020**, *22* (14), 7169–7192.

⁴ Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-XTB - An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. *J. Chem. Theory Comput.* **2019**, *15* (3), 1652–1671.

⁵ Grimme, S.; Bohle, F.; Hansen, A.; Pracht, P.; Spicher, S.; Stahn, M. Efficient Quantum Chemical Calculation of Structure Ensembles and Free Energies for Nonrigid Molecules. *J. Phys. Chem. A* **2021**, *125* (19), 4039–4054.

⁶ Neese, F. Software update: The ORCA program system—Version 5.0. *WIREs Comput Mol Sci.* **2022**, e1606.

⁷ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2016**.

water (SMD model), the approach of Martin and co-workers was followed.⁸ Cartesian coordinates are given in angstroms; absolute energies for all substances are given in hartrees. Analysis of vibrational frequencies was performed for all optimized structures. All compounds, except transition state structures, were characterized by only real vibrational frequencies. TS was characterized by one imaginary frequency. Wavefunction stability, using stable keyword, was also checked for each molecule

For calculations of optimized geometries, frequencies, thermodynamics and kinetics following keywords were used:

opt=(calcfc) freq M11/Def2TZVP scf=xqc scrf=(smd,solvent=water) nosymm pressure=1358 temperature=298.15 test

The same parameters were calculated for transition state structure with keywords:

opt=(calcfc,ts,noeigentest) freq M11/Def2TZVP scf=xqc scrf=(smd,solvent=water) nosymm pressure=1358 temperature=298.15 test

IRC calculation was performed for TS and proved that TS connects products and reactants:

irc=(forward,calcfc,maxcycle=150,MaxPoints=15,HPC) scf=xqc M11/Def2TZVP

scrf=(smd,solvent=water) geom=checkpoint guess=(read) nosymm pressure=1358
temperature=298.15 test

irc=(reverse,calcfc,maxcycle=150,MaxPoints=15,HPC) scf=xqc M11/Def2TZVP

scrf=(smd,solvent=water) geom=checkpoint guess=(read) nosymm pressure=1358
temperature=298.15 test

⁸ Martin, R. L.; Hay, P. J.; Pratt, L. R. Hydrolysis of Ferric Ion in Water and Conformational Equilibrium. *J. Phys. Chem. A* **1998**, *102*, 3565.

Relative stability of conformers/invertomers of PipzDiol 2

Structure	ΔE_0 Kcal/mol	ΔG ^o _{298,15K} Kcal/mol
ax,ax- 2	+0.6	+1.3
ax,eq- 2	0	0
eq,eq- 2	+0.2	+0.1

 Table S4. Relative stability of conformers/invertomers of PipzDiol 2

ax,ax-**2**

С	0.76417300	-0.89302900	0.00692300
С	0.93420500	0.59897700	-0.24391600
Ν	-0.16932600	1.39855300	0.30230000
С	-1.44610600	0.87790600	-0.20118100
С	-1.61613300	-0.61409800	0.04966500
Ν	-0.51260500	-1.41366900	-0.49656800
0	-0.16946600	1.18507400	1.72291600
0	-0.51245500	-1.20015600	-1.91717800
Н	0.78300300	-1.10163700	1.08137200
Н	1.57726800	-1.45319200	-0.46200600
Н	0.96286200	0.80188100	-1.31925200
Н	1.87055700	0.95467200	0.19381600
Н	-1.46494300	1.08650600	-1.27563100
Н	-2.25919900	1.43807100	0.26774900
Н	-2.55249000	-0.96979400	-0.38805700
Н	-1.64477700	-0.81700400	1.12500100
Н	-0.04657500	2.06019100	2.10530800
Н	-0.63564500	-2.07522100	-2.29959200

DFT M11/Def2TZVP, solvent water, SMD mod	del
Total electronic energy=	-418.277000 E ₀
Sum of electronic and zero-point Energies=	-418.121748 E ₀ + E _{ZPE}
Sum of electronic and thermal Energies=	-418.114050 E ₀ + E _{tot}
Sum of electronic and thermal Enthalpies=	-418.113105 E ₀ + H _{corr}
Sum of electronic and thermal Free Energies=	-418.146320 E ₀ + G _{corr}
Zero-point correction (unscaled) =	0.155252
Number of imaginary vibrational frequencies =	= 0

ax,eq-**2**

С	1.11620900	-0.86463400	0.25137700
С	1.26082400	0.60799300	-0.10196100
Ν	0.12857900	1.42195300	0.34700700
С	-1.12188100	0.82650900	-0.13022200
С	-1.25502000	-0.64735000	0.22188000
Ν	-0.11964600	-1.38036500	-0.33632400
0	0.10463500	1.34705500	1.77928800
0	-0.25140300	-2.73194600	0.11651100
Н	1.09620600	-1.00008600	1.34396500
Н	1.96175800	-1.42662400	-0.15377900
Н	1.32040400	0.72705200	-1.18895600
Н	2.17538300	1.01174000	0.33816300
Н	-1.13395100	0.95320900	-1.21789600
Н	-1.95811100	1.38949900	0.29038200
Н	-2.17823400	-1.04768900	-0.20508300
Н	-1.28697800	-0.78208400	1.31434600
Н	0.18966500	2.25914100	2.07686400
Н	-0.25899000	-3.27126100	-0.68184100

DFT M11/Def2TZVP, solvent water, SMD mod	del	
Total electronic energy=	-418.277941 E ₀	
Sum of electronic and zero-point Energies=	-418.123170 E ₀ + E _{ZPE}	
Sum of electronic and thermal Energies=	-418.115175 $E_0 + E_{tot}$	
Sum of electronic and thermal Enthalpies=	-418.114231 E ₀ + H _{corr}	
Sum of electronic and thermal Free Energies=	-418.148351 E ₀ + G _{corr}	
Zero-point correction (unscaled) =	0.154772	
Number of imaginary vibrational frequencies =	= 0	

С	1.12016200	-0.83384400	0.22162000
С	1.25700200	0.61585500	-0.19807700
Ν	0.12437400	1.38012200	0.32272800
С	-1.11790600	0.83346700	-0.22201300
С	-1.25474600	-0.61623200	0.19768400
Ν	-0.12211800	-1.38049800	-0.32312200
0	0.25226500	2.70132900	-0.20624900
0	-0.25000800	-2.70170700	0.20585100
Н	1.11473500	-0.91394200	1.32006500
Н	1.96079700	-1.41306700	-0.16794600
Н	1.28790200	0.69352200	-1.29635200
Н	2.18090900	1.03392300	0.20870500
Н	-1.11248000	0.91356400	-1.32045800
Н	-1.95854100	1.41269000	0.16755300
Н	-2.17865400	-1.03430000	-0.20909700
Н	-1.28564500	-0.69389900	1.29596000
Н	0.27353600	3.28563500	0.55951300
Н	-0.27131300	-3.28600700	-0.55991400

DFT M11/Def2TZVP, solvent water, SMD model	
Total electronic energy=	-418.277605 E ₀
Sum of electronic and zero-point Energies=	-418.122941 E ₀ + E _{ZPE}
Sum of electronic and thermal Energies=	-418.114893 E ₀ + E _{tot}
Sum of electronic and thermal Enthalpies=	-418.113949 E ₀ + H _{corr}
Sum of electronic and thermal Free Energies=	-418.148180 E ₀ + G _{corr}
Zero-point correction (unscaled) =	0.154664
Number of imaginary vibrational frequencies = 0	

Inversion of nitrogen atom in PipzDiol 2

Figure S1. Energy profile for the inversion of nitrogen atom in PipzDiol 2

ax,eq-**2'**

С	1.13138200	-0.69687700	-0.00493900
С	1.27390300	0.77898000	-0.34546200
Ν	0.14052500	1.58743100	0.11061700
С	-1.10904500	0.99440000	-0.37194300
С	-1.24016600	-0.48264000	-0.03262800
Ν	-0.10375300	-1.20940500	-0.59690200
0	0.11653800	1.49982800	1.54217600
0	-0.23347300	-2.56479700	-0.15501900
Н	1.11167300	-0.84176900	1.08644100
Н	1.97772900	-1.25409500	-0.41499000
Н	1.33329600	0.90762000	-1.43137200
Н	2.18790800	1.18013700	0.09818200
Н	-1.12114500	1.13050100	-1.45848000
Н	-1.94613400	1.55250600	0.05344000
Н	-2.16278200	-0.88051500	-0.46318300
Н	-1.27215600	-0.62688300	1.05860900
Н	0.20136100	2.40920000	1.84802000
Н	-0.24342200	-3.09747100	-0.95778000

DFT M11/Def2TZVP, solvent water, SMD model		
Total electronic energy=	-418.277941 E ₀	
Sum of electronic and zero-point Energies=	-418.123195 E ₀ + E _{ZPE}	
Sum of electronic and thermal Energies=	-418.115183 E ₀ + E _{tot}	
Sum of electronic and thermal Enthalpies=	-418.114239 E ₀ + H _{corr}	
Sum of electronic and thermal Free Energies=	-418.148422 E ₀ +G _{corr}	
Zero-point correction (unscaled) =	0.154747	
Number of imaginary vibrational frequencies = 0		

С	1.12353700	-0.83645600	-0.03452900
С	1.26090700	0.67041900	0.04595100
Ν	0.10413100	1.22720700	0.74490700
С	-1.11757400	0.88594900	0.01943800
С	-1.25256600	-0.62083300	-0.06262700
Ν	-0.09628700	-1.17185200	-0.76814700
0	0.23064600	2.64097400	0.75030200
0	-0.22654900	-2.59311500	-0.70879400
Н	1.08413800	-1.26904100	0.97744600
Н	1.98068400	-1.25936900	-0.56384100
Н	1.32695100	1.09942700	-0.96878700
Н	2.16632600	0.93460500	0.59742000
Н	-1.08167800	1.31875900	-0.99543000
Н	-1.97300300	1.31008800	0.55049300
Н	-2.15907700	-0.88230000	-0.61367900
Н	-1.31627000	-1.05225200	0.94858900
Н	0.24905900	2.93499400	-0.17654700
Н	-0.23809700	-2.89029300	-1.62530700

DFT M11/Def2TZVP, solvent water, SMD model		
Total electronic energy=	-418.277872 E ₀	
Sum of electronic and zero-point Energies=	-418.122345 E ₀ + E _{ZPE}	
Sum of electronic and thermal Energies=	-418.114787 E ₀ + E _{tot}	
Sum of electronic and thermal Enthalpies=	-418.113843 E ₀ + H _{corr}	
Sum of electronic and thermal Free Energies=	-418.146915 E ₀ + G _{corr}	
Zero-point correction (unscaled) =	0.155527	
Number of imaginary vibrational frequencies = 0		

Charge 0; multiplicity 1

С	1.10966200	-0.99693700	0.26761400
С	1.30554300	0.51185900	0.17416700
Ν	0.10515100	1.19792300	0.55575300
С	-1.18997600	0.73695100	0.14670000
С	-1.26919600	-0.78235300	0.24152800
Ν	-0.11556200	-1.37027600	-0.44049700
0	0.18766700	2.22884700	1.48554700
0	-0.24590900	-2.78833800	-0.28528200
Н	1.03416500	-1.30682000	1.32239900
Н	1.95163500	-1.51521900	-0.19811300
Н	1.62017200	0.76885800	-0.85225600
Н	2.10737600	0.81429600	0.85289000
Н	-1.43151500	1.04399600	-0.88572700
Н	-1.93934500	1.17898000	0.80861800
Н	-2.18003000	-1.14271400	-0.24321900
Н	-1.27337000	-1.09860900	1.29705800
Н	0.27085500	3.05780600	0.99635600
Н	-0.25787300	-3.14613900	-1.17981800

DFT M11/Def2TZVP, solvent water, SMD model		
Total electronic energy=	-418.251524 E ₀	
Sum of electronic and zero-point Energies=	-418.097733 E ₀ + E _{ZPE}	
Sum of electronic and thermal Energies=	-418.090164 E ₀ + E _{tot}	
Sum of electronic and thermal Enthalpies=	-418.089220 E ₀ + H _{corr}	
Sum of electronic and thermal Free Energies=	-418.122669 E ₀ + G _{corr}	
Zero-point correction (unscaled) =	0.153791	
Number of imaginary vibrational frequencies = 1; i378		

тs
X-Ray analysis

X-ray crystallographic data and refinement details

For **2**•2PABA and $[H_2(2)]^{2+}[Ox]^{2-} H_2O$ X-ray diffraction data were collected at 100K on a fourcircle Rigaku Synergy S diffractometer equipped with a HyPix600HE area-detector (kappa geometry, shutterless ω -scan technique), using graphite monochromatized Cu K_{α}-radiation. The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program⁹. For $[H_2(2)]^{2+}[SO_4]^{2-}$ intensities of reflections were measured with a Bruker APEXII DUO CCD diffractometer [λ (MoK α) = 0.71073 Å, ω -scans, 2 θ <58°], and 2302 independent reflections were used in the further refinement. The structures were solved by direct methods using SHELXT¹⁰ and refined on F^2 using SHELXL-2018¹¹ (2•2PABA and $[H_2(2)]^{2+}[Ox]^{2-}\bullet H_2O$) or Intrinsic Phasing and refined with the XL¹⁰ refinement package using Least-Squares minimization in the OLEX2 program.¹² All non-hydrogen atoms were refined with individual anisotropic displacement parameters. For 2•2PABA and $[H_2(2)]^{2+}[Ox]^{2-}$ •H₂O locations of amino and hydroxy hydrogen atoms were found from the electron density-difference map; these hydrogen atoms were refined with individual isotropic displacement parameters. For [H₂(2)]²⁺[SO₄]²⁻ hydrogen atoms of NH and OH groups were located from difference Fourier synthesis. All other hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters.

CCDC 2176251 for **2**•2PABA, CCDC 2176252 for $[H_2(2)]^{2+}[Ox]^{2-}\bullet H_2O$ and CCDC 2175349 for $[H_2(2)]^{2+}[SO_4]^{2-}$ contain the supplementary crystallographic information for this paper.

Graphical materials were prepared using Olex2, Mercury and Crystal explorer software.

⁹ CrysAlisPro. Version 1.171.41.106a. *Rigaku Oxford Diffraction*, **2021**.

¹⁰ Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination. *Acta Cryst.* **2015**, A71(1), 3-8.

¹¹ Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. **2015**, C71 (1), 3-8.

¹² Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42* (2), 229-341.

Identification code	2 •2PABA	$[H_2(2)]^{2+}[SO_4]^{2-}$	$[H_2(2)]^{2+}[Ox]^{2-}H_2O$
Empirical formula	$C_9H_{12}N_2O_3$	$C_4H_{12}N_2O_6S$	$C_6H_{13.80}N_2O_{6.90}$
Formula weight	196.21	216.22	224.40
Temperature, K	100	100 120 10	
Wavelength, Å	1.54184	1.54184 0.71073 1.5	
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	P2 ₁ /n	P-1	P2 ₁ /n
Unit cell dimensions			
a, Å	10.63990(10) Å	5.7797(4)	9.54180(10)
b, Å	8.49780(10) Å	6.3309(5)	9.76040(10)
c, Å	11.93370(10)	12.8187(10)	10.15310(10)
α, °	90°.	76.647(2)	90
β, °	116.019(2)°	78.320(2)	97.0180(10)
γ, °	90	74.621(2)	90
Volume, Å ³	969.64(2)	435.01(6)	938.492(17)
Z	4	2 (Z' = 1)	4
Density (calculated), g/cm ⁻³	1.344	1.651	1.588
Absorption coefficient, mm ⁻¹	0.856	0.377	1.275
F(000)	416	228	476
Reflections collected	12736	5422	12301
Independent reflections	2067	2302	1990
Goodness-of-fit on F2	1.062	1,042	1.095
Einal B indicos [152/11]	R1 = 0.0427	R1 = 0,0358	R1 = 0.0329
rinai R inuices [1>20(1)]	wR2 = 0.1176	wR2 = 0,0912	wR2 = 0.0918

 Table S5.
 Experimental parameters for X-Ray analysis.

1,4-Dihydroxypiperazine-1,4-diium sulfate $[H_2(2)]^{2+}[SO_4]^{2-}$

Figure S2. General view of the compound $[H_2(2)]^{2+}[SO_4]^{2-}$ in representation of non-hydrogen atoms as thermal ellipsoids at 30% probability level.

Figure S3. View of the $[H_2(2)]^{2+}[SO_4]^{2-}$ packing in representation of non-hydrogen atoms as thermal ellipsoids at 30% probability level.

:: Resd 0 - Infinite (Type2) 2D-Network						
:: Base Vectors: 1 : [1 0 0], 2 : [0 -1 -1], Plane: (0 1 -1)						
Donor HAcceptor	[ARU]	D – H, Å	HA, Å	DA, Å	D - HA, °	
01H104	[1555.03]	0.8938(16)	1.6966(16)	2.5861(16)	173.05(14)	
N1H1A03	[1655.03]	0.8730(17)	2.4485(17)	2.9707(17)	118.93(13)	
N1H1A06	[1655.03]	0.8730(17)	1.8516(17)	2.7216(17)	174.27(15)	
O2H2O6	[1555.03]	0.8373(16)	1.7576(16)	2.5933(16)	175.73(14)	
N2H2C04	[1455.03]	0.8525(17)	1.8494(17)	2.6971(17)	172.72(15)	
N2H2C05	[1455.03]	0.8525(17)	2.5598(17)	3.1068(17)	122.94(13)	
C2H2AO3	[2856.03]	0.990(2)	2.427(2)	3.246(2)	139.80(16)	
C2H2AO3 C2H2BO3	[2856.03] [2756.03]	0.990(2) 0.990(2)	2.427(2) 2.578(2)	3.246(2) 3.173(2)	139.80(16) 118.61(13)	
C2H2AO3 C2H2BO3 C3H3AO3	[2856.03] [2756.03] [1465.03]	0.990(2) 0.990(2) 0.990(2)	2.427(2) 2.578(2) 2.384(2)	3.246(2) 3.173(2) 3.327(2)	139.80(16) 118.61(13) 158.86(18)	
C2H2AO3 C2H2BO3 C3H3AO3 C3H3AO5	[2856.03] [2756.03] [1465.03] [1465.03]	0.990(2) 0.990(2) 0.990(2) 0.990(2)	2.427(2) 2.578(2) 2.384(2) 2.592(2)	3.246(2) 3.173(2) 3.327(2) 3.279(2)	139.80(16) 118.61(13) 158.86(18) 126.57(16)	
C2H2AO3 C2H2BO3 C3H3AO3 C3H3AO5 C4H4AO5	[2856.03] [2756.03] [1465.03] [1465.03] [2567.03]	0.990(2) 0.990(2) 0.990(2) 0.990(2) 0.990(2)	2.427(2) 2.578(2) 2.384(2) 2.592(2) 2.459(2)	3.246(2) 3.173(2) 3.327(2) 3.279(2) 3.322(2)	139.80(16) 118.61(13) 158.86(18) 126.57(16) 145.45(14)	
C2H2AO3 C2H2BO3 C3H3AO3 C3H3AO5 C4H4AO5 C4H4BO5	[2856.03] [2756.03] [1465.03] [1465.03] [2567.03] [2667.03]	0.990(2) 0.990(2) 0.990(2) 0.990(2) 0.990(2) 0.990(2)	2.427(2) 2.578(2) 2.384(2) 2.592(2) 2.459(2) 2.581(2)	3.246(2) 3.173(2) 3.327(2) 3.279(2) 3.322(2) 3.235(2)	139.80(16) 118.61(13) 158.86(18) 126.57(16) 145.45(14) 123.57(14)	
C2H2AO3 C2H2BO3 C3H3AO3 C3H3AO5 C4H4AO5 C4H4BO5	[2856.03] [2756.03] [1465.03] [1465.03] [2567.03] [2667.03]	0.990(2) 0.990(2) 0.990(2) 0.990(2) 0.990(2) 0.990(2)	2.427(2) 2.578(2) 2.384(2) 2.592(2) 2.459(2) 2.581(2)	3.246(2) 3.173(2) 3.327(2) 3.279(2) 3.322(2) 3.235(2)	139.80(16) 118.61(13) 158.86(18) 126.57(16) 145.45(14) 123.57(14)	
C2H2AO3 C2H2BO3 C3H3AO3 C3H3AO5 C4H4AO5 C4H4BO5	[2856.03] [2756.03] [1465.03] [1465.03] [2567.03] [2667.03] :: Resd 0 -	0.990(2) 0.990(2) 0.990(2) 0.990(2) 0.990(2) 0.990(2)	2.427(2) 2.578(2) 2.384(2) 2.592(2) 2.459(2) 2.581(2) 3) 2D-Network	3.246(2) 3.173(2) 3.327(2) 3.279(2) 3.322(2) 3.235(2)	139.80(16) 118.61(13) 158.86(18) 126.57(16) 145.45(14) 123.57(14)	

Table S6. Hydrogen bonds and short contacts of $[H_2(2)]^{2+}[SO_4]^{2-}$.

1,4-Dihydroxypiperazine-1,4-diium oxalate monohydrate $[H_2(2)]^{2+}[Ox]^{2-} \bullet H_2O$

Figure S4.General view of the compound $[H_2(2)]^{2+}[Ox]^{2-} \bullet H_2O$ in representation of non-hydrogen atoms as thermal ellipsoids at 30% probability level.

Figure S5. View of the $[H_2(2)]^{2+}[Ox]^{2-} \bullet H_2O$ packing in representation of non-hydrogen atoms as thermal ellipsoids at 30% probability level.

:: Resd 0 - Infinite (Type2) 2D-Network						
:: Base Vectors: 1: [0 0 1], 2: [1 0 0], Plane: (0 1 0)						
:: Resd 0 - Infinite (Type2) 2D-Network						
:: Base Vectors: 1: [1 0 0], 2: [0 0 1], Plane: (0 1 0)						
Donor -HAcceptor	[ARU]	D – H, Å	HA, Å	DA, Å	D - HA, °	
O1H1O5	[1556.02]	1.01(2)	1.57(2)	2.5733(11)	176.4(17)	
O1H1O6	[1556.02]	1.01(2)	2.57(2)	3.2371(12)	123.2(14)	
N1H1A04	[4465.02]	0.891(19)	1.955(19)	2.7364(12)	145.5(15)	
N1H1A06	[4465.02]	0.891(19)	2.166(18)	2.8281(13)	130.6(15)	
O2H2O4	[1555.02]	0.94(2)	1.62(2)	2.5632(11)	178(2)	
N2H2AO3	[4565.02]	0.897(17)	2.115(16)	2.7875(13)	131.1(13)	
N2H2A05	[4565.02]	0.897(17)	1.960(17)	2.7513(12)	146.2(14)	
07H7A03	[1555.02]	0.82(3)	2.03(3)	2.8295(14)	165(3)	
07Н7ВО6	[4465.02]	0.84(2)	2.02(2)	2.8454(14)	165.5(18)	
C2H2B01	[3677.01]	0.99	2.55	3.3361(13)	137	
C2H2CO3	[1555.02]	0.99	2.48	3.3323(13)	144	
С3Н3ВО7	[3667.03]	0.99	2.28	3.2094(16)	156	
C4H4AO6	[1556.02]	0.99	2.50	3.3512(13)	144	
C4H4AO3	[4565.02]	0.99	2.57	3.0326(14)	108	
C4H4BO5	[2646.02]	0.99	2.59	3.5741(14)	173	
:: Resd 0 - Infinite (Type3) 2D-Network						
:: Base Vectors: 1: [0 0 1], 2: [1 0 0], Plane: (0 1 0)						
:: Resd 0 - Infinite (Type3) 2D-Network						
:: Base Vectors: 1: [0 0 1], 2: [1 0 0], Plane: (0 1 0)						

Table S7. Hydroger	n bonds and short contacts	of $[H_2(2)]^{2+}[Ox]^{2-}H_2O$.
--------------------	----------------------------	-----------------------------------

Co-crystal of 1,4-dihydroxypiperazine and 4-aminobenzoic acid (2•2PABA)

Figure S6. General view of the compound **2**•2PABA in representation of non-hydrogen atoms as thermal ellipsoids at 30% probability level.

Figure S7. View of the **2**•2PABA packing in representation of non-hydrogen atoms as thermal ellipsoids at 30% probability level.

 Table S8.
 Hydrogen bonds and short contacts of 2•2PABA.

DonorHAcceptor	[ARU]	D - H, Å	HA, Å	DA, Å	D - HA, °	
01H102	[1555.01]	0.92(2)	1.78(2)	2.6853(15)	167(2)	
N2H2AO2	[2555.01]	0.902(19)	2.13(2)	3.0117(15)	166.2(16)	
N2H2B01	[4465.02]	0.89(2)	2.41(2)	3.1824(15)	146.7(15)	
03H301	[1555.02]	0.98(3)	2.45(3)	3.2692(14)	141.6(19)	
O3H3N1	[1555.02]	0.98(3)	1.65(3)	2.6211(15)	174(2)	
C1H1A02	[2645.01]	0.99	2.53	3.3529(16)	140	
:: Resd 0 - Infinite (Type3) 3D-Framework: Det = 2						
:: Base Vectors: 1: [0 1 0], 2: [1 0 1], 3: [1 0 -1]						