Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Theoretical Investigation of Triplet Energy Potential Surfaces for (C[^]C^{*}) Cyclometalated Platinum(II) Complexes and Corresponding Control Strategies

Yafei Luo^a, Jiayu Xu^a, Zhongzhu Chen^a, Zhigang Xu^a, Dianyong Tang^{a,*}

^{a.} National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China

^{*} Address correspondence to this author at Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China, E-mail: tangdy2008@163.com

LUMO HOMO PI-41 PI-5 PI-5-1 PI-6 PI-5 PI-5-1 PI-6

Figure S1. HOMO and LUMO of monometallic Pt(II) complexes at the S_0 equilibrium geometry.

Figure S2. Potential energy surface scans for Pt-3, Pt-4 and Pt-5 between T_1 and ${}^{3}MC$ states, respectively.

The details about calculations of radiative rate constants

Based on the optimized geometries of the lowest triplet states, the phosphorescence radiative decay rates were computed using the quadratic response (QR) time-dependent (TD)-B3LYP approach. The rate constants (kr) for phosphorescence radiative decay from the three spin sublevels (indexed by i) of the T₁ states, can be expressed as follow:

$$\kappa_{i}^{r} = \frac{1}{\tau_{i}} = \kappa^{r} \left(S_{0}, \mathbf{T}_{em}^{i} \right) = \frac{4\alpha_{0}^{3}}{3t_{0}} \Delta E_{S_{0} - T_{em}^{i}}^{3} \sum_{j \in \{x, y, z\}} \left| M_{j}^{i} \right|^{2}$$
(1)

Where τ_i refers to radiative lifetime from sublevel i (i=1, 2, 3) of triplet excited states to the ground state, α_0 is the fine-structure constant, $t_0 = (4\pi\varepsilon_0)^2 \hbar^3 / m_e e^4$, $\Delta E_{S_0 - T_{em}^i}$ is the transition energy between the T₁ and S₀ statse, M_j^i is on behalf of the spin-orbit coupled T₁ \rightarrow S₀ transition dipole moment, which can be shown as follow and calculated using the QR TD-B3LYP approach.

$$M_{j}^{i} = \sum_{n=0}^{\infty} \frac{\langle S_{0} | \hat{\mu}_{j} | S_{n} \rangle \langle S_{n} | \hat{H}_{SO} | T_{em}^{i} \rangle}{E(S_{n}) - E(T_{em})} + \sum_{m=1}^{\infty} \frac{\langle S_{0} | \hat{H}_{SO} | T_{m} \rangle \langle T_{m} | \hat{\mu}_{j} | T_{em}^{i} \rangle}{E(T_{m}) - E(S_{0})} \qquad j \in \{x, y, z\}$$
(2)

The Cartesian components $j \in \{x, y, z\}$ are used to represent spin eigenfunctions. The operators $\hat{\mu}_j$, \hat{H}_{so} represent the electric dipole and spin-orbit Hamiltonian, respectively.