Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Phenothiazine and phenothiazine-5,5dioxide-based push-pull derivatives: Synthesis, photophysical, electrochemical and computational studies

Indresh Singh Yadav, Rajneesh Misra*

Department of Chemistry, Indian Institute of Technology Indore

Indore 453552, India

Email: rajneeshmisra@iiti.ac.in

Supporting Information

Experimental Section	S2
¹ H NMR, ¹³ C NMR, HMBC NMR and HRMS of PTZ 1–6	S3–S16
UV-vis spectra of PTZ 1–6	
CV and DPV plots of PTZ 1–6	
DFT and TD-DFT data of PTZ 1–6	

Experimental Section:

General methods

All the chemicals were used as received unless otherwise indicated. All oxygen or moisture-sensitive reactions were performed under an inert atmosphere. All the chemicals were purchased from commercial sources and used without further purification. ¹H NMR (400 MHz), ¹³C NMR (100 MHz and 126 MHz), and HMBC NMR spectra were recorded on the Bruker Avance (III) 400 MHz or 500 MHz, using CDCl₃ as a solvent, and the chemical shifts were reported in parts per million (ppm) with TMS (0 ppm) and CDCl₃ (77.00 ppm) as standards. Tetramethylsilane (TMS) was used as reference for recording ¹H (of residual proton; $\delta = 7.26$ ppm) and ¹³C (of residual proton; $\delta = 77.0$ ppm) spectra in CDCl₃. High-Resolution Mass Spectrometry (HRMS) was recorded on a Bruker-Daltonics micrOTOF-Q II mass spectrometer. Thermogravimetric analysis was performed on the Mettler Toledo thermal analysis system. UV-visible absorption spectra of all compounds in Dichloromethane were recorded on a Carry-100 Bio UV-visible Spectrophotometer. Cyclic voltammograms (CVs) were recorded on a PalmSens 4 electrochemical analyzer using Glassy carbon as a working electrode, Pt wire as the counter electrode, and Ag/AgCl as the reference electrode. The scan rate was 100 mV s^{-1} for cyclic voltammetry. A solution of tetrabutylammonium hexafluorophosphate (Bu_4NPF_6) in CH₂Cl₂ (0.1 M) was used as the supporting electrolyte.

Figure S1. ¹H NMR spectrum of PTZ 1.

Figure S2. ¹³C NMR spectrum of PTZ 1.

Figure S3. HRMS spectrum of PTZ 1.

Figure S4. ¹H NMR spectrum of PTZ 2.

Figure S6. HRMS spectrum of PTZ 2.

Figure S7. ¹H NMR spectrum of PTZ 3.

Figure S8. ¹³C NMR spectrum of PTZ 3.

Figure S9. HMBC spectrum of PTZ 3 in CDCl₃ solution.

Figure S10. HRMS spectrum of PTZ 3.

Figure S11. ¹H NMR spectrum of PTZ 4.

Figure S13. HRMS spectrum of PTZ 4.

Figure S14. ¹H NMR spectrum of PTZ 5.

Figure S15. ¹³C NMR spectrum of PTZ 5.

Figure S16. HRMS spectrum of PTZ 5.

Figure S17. ¹H NMR spectrum of PTZ 6.

Figure S18. ¹³C NMR spectrum of PTZ 6.

Figure S19. HRMS spectrum of PTZ 6.

Figure S20. Normalized absorption spectra of push-pull PTZ 1-6 in dry DCM $(1 \times 10^{-5} \text{ M})$

Cyclic Voltammetry:

Differential Pulse Voltammetry:

Table S1. The molecular orbital diagram of push–pull PTZ 1–6.

Compounds	Wavelength	Composition	f ^a	Assignment
	(nm)			
PTZ 1	425	HOMO→LUMO (0.69)	1.32	ππ*
PTZ 2	398	HOMO-1→LUMO+1 (0.67)	0.60	π – π *
	484	HOMO-1 \rightarrow LUMO (0.67)	0.25	ICT
PTZ 3	392	HOMO-2→LUMO+1 (0.63)	0.84	ππ*
	773	HOMO \rightarrow LUMO (0.67)	0.22	ICT
PTZ 4	398	HOMO→LUMO (0.70)	2.38	ππ*
PTZ 5	389	HOMO-1→LUMO (0.59)	0.54	ππ*
	403	HOMO→LUMO (0.60)	0.92	ICT
PTZ 6	404	HOMO-1→LUMO+1 (0.61)	0.91	ππ*
	591	HOMO→LUMO (0.60)	0.43	ICT

 Table S2. Calculated electronic transitions of push-pull PTZ 1-6.

f^a oscillator strength

Experimental (bottom) and TD-DFT predicted (top) UV-Vis absorption spectra of PTZ 1–5.

DFT Calculation data

Calculation method: B3LYP/6-31G(d,p) for C, H, N, S and O with Gaussian 09.

PTZ 1.

Standard orientation:

Cent	er	Atomic	Atomic	Coordin	ates (A	ngstr
Num	ber	Number	Туре	Х	Y	Ζ
1	6	0	1.598041	0.425783	-0.0588	875
2	6	0	2.375914	-0.622236	0.473′	711
3	6	0	3.762715	-0.539694	0.4932	249
4	6	0	4.433640	0.572176	-0.0580	045
5	6	0	3.655330	1.600951	-0.614	862
6	6	0	2.267000	1.538461	-0.601	505
7	6	0	6.553183	-0.575697	-0.354	456
8	6	0	6.118810	-1.801940	0.185	178
9	6	0	6.795060	-2.987583	-0.101	881
10	1	0	6.429040	-3.919508	0.31	8016
11	6	0	7.936035	-2.971942	-0.90	4686
12	6	0	8.367789	-1.766247	-1.45	3536
13	6	0	7.672474	-0.583089	-1.20	0778
14	1	0	1.884528	-1.495471	0.889	9019
15	1	0	4.137202	2.461298	-1.064	4152
16	1	0	1.687411	2.349907	-1.02	8439
17	1	0	8.470521	-3.894497	-1.10	7152

18	1	0	9.239770	-1.740577	-2.100068
19	1	0	8.001073	0.335145	-1.673966
20	6	0	0.178195	0.352955	-0.052659
21	6	0	-9.341805	-0.140026	-0.046944
22	6	0	-10.114305	0.933343	-0.535375
23	6	0	-10.002128	-1.286487	0.439881
24	6	0	-11.503870	0.857756	-0.534706
25	1	0	-9.610766	1.817970	-0.911178
26	6	0	-11.392196	-1.352633	0.436214
27	1	0	-9.412062	-2.115418	0.816784
28	6	0	-12.148075	-0.283134	-0.049983
29	1	0	-11.888230	-2.241829	0.814064
30	7	0	5.844215	0.613175	-0.043043
31	16	0	4.724946	-1.807574	1.297430
32	6	0	-1.037680	0.289692	-0.049239
33	6	0	-2.457032	0.216203	-0.047065
34	6	0	-3.235789	1.277987	-0.554757
35	6	0	-3.121052	-0.920242	0.461999
36	6	0	-4.620263	1.206244	-0.553527
37	1	0	-2.736701	2.157054	-0.948790
38	6	0	-4.505587	-0.991891	0.462746
39	1	0	-2.533230	-1.743111	0.854973
40	6	0	-5.284019	0.069706	-0.045048
41	1	0	-5.208248	2.028986	-0.946636
42	1	0	-5.004716	-1.871075	0.856479
43	6	0	-6.703978	-0.004053	-0.044988
44	6	0	-7.919464	-0.067107	-0.045622

45	6	0	6.528079	1.906034	-0.140407
46	1	0	7.599570	1.699395	-0.133592
47	1	0	6.315621	2.410939	-1.096222
48	1	0	-12.086994	1.691898	-0.913762
49	1	0	-13.232545	-0.338437	-0.051151
50	6	0	6.219192	2.838734	1.039325
51	1	0	5.143365	3.029798	1.101015
52	1	0	6.495842	2.321559	1.964976
53	6	0	6.974421	4.166133	0.925129
54	1	0	6.695777	4.709992	0.015200
55	1	0	6.754364	4.815314	1.777553
56	1	0	8.058960	4.010673	0.898523

Total Energy (HF) =-1648.0376056 Hartrees

PTZ 2. Calculation method: B3LYP/6-31G(d,p)

Standard orientation:

Center Number	Ator Nu	nic At mber	tomic Type	Coordinate X Y	es (Angstroms) Z Z
1	6	0	4.283192	5.431746	0.223535
2	6	0	3.481824	4.492072	0.871349
3	6	0	3.739527	3.128362	0.728390
4	6	0	4.789736	2.676639	-0.091227
5	6	0	5.554072	3.631357	-0.778539

6	6	0	5.315116	4.994621	-0.604376
7	6	0	3.944250	0.412098	-0.346043
8	6	0	2.772488	0.639951	0.414283
9	6	0	1.677138	-0.200740	0.297377
10	1	0	0.796762	0.014875	0.893093
11	6	0	2.873843	-1.559422	-1.297455
12	6	0	3.965281	-0.712481	-1.194151
13	1	0	4.091464	6.491625	0.355121
14	1	0	2.657560	4.810886	1.501791
15	1	0	6.333023	3.315170	-1.462523
16	1	0	5.931363	5.712447	-1.136678
17	1	0	2.955452	-2.425295	-1.940702
18	1	0	4.849089	-0.933334	-1.779194
19	6	0	-1.714174	-1.604116	0.435479
20	6	0	-1.880902	-0.513987	-0.447832
21	6	0	-2.840988	-2.049942	1.159161
22	6	0	-3.100780	0.129769	-0.570266
23	1	0	-1.038517	-0.157272	-1.030780
24	6	0	-4.066177	-1.418655	1.026409
25	1	0	-2.769022	-2.917103	1.802608
26	6	0	-4.220575	-0.309179	0.167422
27	1	0	-3.205160	0.975341	-1.241042
28	1	0	-4.924816	-1.784835	1.578008
29	6	0	-5.475163	0.340096	0.038050
30	6	0	-7.811317	1.547633	-0.200403
31	6	0	-8.927748	1.093154	0.530571
32	6	0	-7.959796	2.654760	-1.060325

33	6	0	-10.156813	1.732250	0.401479
34	1	0	-8.815616	0.240837	1.192413
35	6	0	-9.193242	3.286762	-1.182071
36	1	0	-7.101930	3.005586	-1.624352
37	6	0	-10.293822	2.828917	-0.453265
38	1	0	-9.297496	4.138601	-1.847237
39	6	0	-0.396987	-2.241262	0.552122
40	7	0	5.031290	1.281461	-0.233216
41	16	0	2.772897	1.936788	1.634781
42	6	0	-6.551811	0.897386	-0.072123
43	6	0	1.693307	-1.320826	-0.565450
44	6	0	0.517746	-2.187078	-0.645938
45	6	0	6.377886	0.811944	-0.594420
46	1	0	6.432976	0.534474	-1.657106
47	1	0	7.054111	1.656209	-0.459145
48	6	0	0.157644	-2.956152	-1.731651
49	6	0	-0.963281	-3.846939	-1.668424
50	6	0	0.825765	-2.936808	-2.997105
51	7	0	-1.866008	-4.580899	-1.632842
52	7	0	1.328895	-2.939152	-4.046977
53	6	0	0.083487	-2.873154	1.675160
54	6	0	-0.592230	-2.914755	2.937602
55	6	0	1.354015	-3.538913	1.666353
56	7	0	-1.091357	-2.960770	3.987962
57	7	0	2.379013	-4.089622	1.681122
58	1	0	-11.254839	3.324688	-0.551365
59	1	0	-11.010760	1.374372	0.968557

6	50	6	0	6.870259	-0.337934	0.296106
6	51	1	0	6.849135	0.002586	1.337369
6	52	1	0	6.186278	-1.190167	0.235387
6	53	6	0	8.284171	-0.782797	-0.089694
6	54	1	0	8.627531	-1.591612	0.561187
6	55	1	0	8.322134	-1.150353	-1.121373
6	6	1	0	9.002446	0.040269	-0.003419

Total Energy (HF) =-2095.6229188 Hartrees

PTZ 3. Calculation method: B3LYP/6-31G(d,p)

Standard orientation:

Center	Atom	ic A	tomic	Coordinate	s (Angstroms)
Number	Nun	nber	Туре	X Y	Z
1	6	0	-5.671132	-4.382071	-2.827293
2	6	0	-4.675260	-4.229945	-1.862970
3	6	0	-4.645230	-3.092474	-1.055571
4	6	0	-5.591950	-2.066141	-1.223103
5	6	0	-6.567201	-2.216461	-2.220201
6	6	0	-6.614326	-3.370921	-3.001492
7	6	0	-4.277414	-0.345615	-0.118144
8	6	0	-3.177572	-1.193933	0.158469
9	6	0	-1.929771	-0.667692	0.456063
10	1	0	-1.112397	-1.353282	0.655441

11	6	0	-2.809645	1.565160	0.244648
12	6	0	-4.055689	1.044097	-0.072025
13	1	0	-5.702687	-5.278182	-3.438391
14	1	0	-3.921878	-4.998702	-1.721898
15	1	0	-7.295096	-1.431812	-2.389835
16	1	0	-7.387598	-3.468180	-3.757177
17	1	0	-2.697392	2.639818	0.327956
18	1	0	-4.866523	1.731241	-0.280342
19	6	0	1.696181	-0.083575	1.458465
20	6	0	1.886010	-0.474842	0.115024
21	6	0	2.771579	-0.259188	2.355531
22	6	0	3.076185	-1.044220	-0.307235
23	1	0	1.081309	-0.342711	-0.599906
24	6	0	3.970175	-0.811516	1.933444
25	1	0	2.681961	0.063308	3.385424
26	6	0	4.145911	-1.223808	0.594994
27	1	0	3.196153	-1.352540	-1.339980
28	1	0	4.790216	-0.923983	2.634015
29	6	0	5.372133	-1.792550	0.163723
30	6	0	7.653917	-2.846387	-0.646171
31	6	0	8.714291	-3.041245	0.261990
32	6	0	7.828830	-3.219649	-1.994233
33	6	0	9.914889	-3.594670	-0.171642
34	1	0	8.581858	-2.754517	1.299930
35	6	0	9.033562	-3.771890	-2.417607
36	1	0	7.014078	-3.069913	-2.694874
37	6	0	10.078710	-3.961004	-1.509910

38	1	0	9.158650	-4.055463	-3.458201
39	6	0	0.404878	0.496964	1.865354
40	7	0	-5.528690	-0.900202	-0.412560
41	16	0	-3.439625	-2.952515	0.249013
42	6	0	6.423877	-2.279110	-0.208936
43	6	0	-1.706495	0.726630	0.503198
44	6	0	-6.752202	-0.115218	-0.193348
45	1	0	-6.484189	0.723871	0.449485
46	1	0	-7.126086	0.316087	-1.133716
47	6	0	1.845627	5.925806	-1.487651
48	6	0	2.977649	6.574320	-0.916107
49	6	0	1.294425	6.508056	-2.664952
50	7	0	3.904946	7.091545	-0.434662
51	7	0	0.828559	6.967831	-3.629780
52	6	0	-0.139745	0.339778	3.123475
53	6	0	0.402362	-0.506466	4.144140
54	6	0	-1.331798	1.032464	3.517447
55	7	0	0.795321	-1.189204	5.001432
56	7	0	-2.284442	1.595979	3.877498
57	6	0	-0.381023	1.255506	0.839703
58	6	0	0.174801	2.389967	0.245533
59	6	0	-0.362243	2.981717	-0.961389
60	6	0	1.336104	3.046711	0.806706
61	6	0	0.172914	4.100533	-1.518103
62	1	0	-1.182654	2.484843	-1.464628
63	6	0	1.861134	4.177850	0.266748
64	1	0	1.776398	2.647441	1.712860

65	6	0	1.302143	4.769258	-0.922833
66	1	0	-0.234078	4.493908	-2.443742
67	1	0	2.713417	4.658654	0.735156
68	1	0	11.017518	-4.391996	-1.844276
69	1	0	10.725793	-3.740509	0.535484
70	6	0	-7.856813	-0.913353	0.513344
71	1	0	-8.127285	-1.793875	-0.077313
72	1	0	-7.456459	-1.285369	1.462985
73	6	0	-9.100268	-0.053981	0.761002
74	1	0	-9.528849	0.313093	-0.178459
75	1	0	-9.874941	-0.631207	1.273521
76	1	0	-8.870155	0.817234	1.384275

Total Energy (HF) =-2326.6698198 Hartrees

PTZ 4. Calculation method: B3LYP/6-31G(d,p)

Standard orientation:

Center	Aton	nic At	tomic	Coordinat	es (Angstroms)
Number	Nu	mber	Туре	X Y	ZZ
1	6	0	1.242092	0.573794	0.285135
2	6	0	2.037028	-0.581649	0.289631
3	6	0	3.423413	-0.484482	0.331965
4	6	0	4.102099	0.754573	0.322852
5	6	0	3.287750	1.908911	0.351994
6	6	0	1.905320	1.818132	0.340320

7	6	0	6.296505	-0.216344	-0.223728
8	6	0	5.832218	-1.548739	-0.256936
9	6	0	6.578689	-2.585687	-0.819032
10	1	0	6.148903	-3.581890	-0.830964
11	6	0	7.844987	-2.333243	-1.329952
12	6	0	8.348472	-1.031891	-1.260336
13	6	0	7.594650	0.009164	-0.728936
14	1	0	1.582401	-1.565997	0.275038
15	1	0	3.732321	2.894362	0.358740
16	1	0	1.315498	2.728572	0.352796
17	1	0	8.433873	-3.133769	-1.764255
18	1	0	9.340549	-0.812969	-1.643838
19	1	0	8.017535	1.004139	-0.732825
20	6	0	-0.175726	0.494400	0.236982
21	6	0	-9.680100	-0.080768	-0.168982
22	6	0	-10.468761	1.086955	-0.209985
23	6	0	-10.321126	-1.336039	-0.194834
24	6	0	-11.855893	0.997010	-0.275292
25	1	0	-9.979645	2.055312	-0.190228
26	6	0	-11.708949	-1.415558	-0.260080
27	1	0	-9.718259	-2.237637	-0.163255
28	6	0	-12.481081	-0.252043	-0.300571
29	1	0	-12.190527	-2.388766	-0.279372
30	7	0	5.500110	0.840749	0.254466
31	16	0	4.346915	-1.971553	0.608972
32	6	0	-1.390111	0.426998	0.191402
33	6	0	-2.807853	0.341238	0.134677

34	6	0	-3.601223	1.507622	0.108584
35	6	0	-3.452411	-0.913510	0.100946
36	6	0	-4.983708	1.422992	0.049493
37	1	0	-3.115949	2.477654	0.134667
38	6	0	-4.834947	-0.997572	0.042104
39	1	0	-2.851945	-1.816815	0.121342
40	6	0	-5.628833	0.168607	0.014539
41	1	0	-5.584288	2.326282	0.029229
42	1	0	-5.320324	-1.967445	0.016238
43	6	0	-7.046577	0.081738	-0.048187
44	6	0	-8.260063	0.006527	-0.103296
45	6	0	6.144270	2.131208	0.550566
46	1	0	5.579601	2.598955	1.361984
47	1	0	7.132054	1.913148	0.965940
48	1	0	-12.451917	1.904327	-0.306581
49	1	0	-13.563732	-0.318368	-0.351437
50	6	0	6.274393	3.107213	-0.632169
51	1	0	6.826226	2.629804	-1.448421
52	1	0	5.283308	3.333363	-1.038841
53	6	0	6.976231	4.402706	-0.212803
54	1	0	7.063102	5.092408	-1.056985
55	1	0	6.424983	4.918286	0.581649
56	1	0	7.987341	4.207036	0.161646
57	8	0	4.654536	-2.063275	2.047136
58	8	0	3.684585	-3.108470	-0.051326

Total Energy (HF) =-1798.417541 Hartrees

_

PTZ 5. Calculation method: B3LYP/6-31G(d,p)

Standard orientation:

Center	Atomi	ic .	Atomic	Coordinate	s (Angstroms)
Number	Num	ıber	Туре	X Y	Z
1	6	0	-4.556916	-5.072976	0.480142
2	6	0	-3.605202	-4.184655	0.963579
3	6	0	-3.763664	-2.812919	0.758961
4	6	0	-4.848380	-2.279951	0.032081
5	6	0	-5.809368	-3.200767	-0.432722
6	6	0	-5.664512	-4.565021	-0.202343
7	6	0	-3.857033	-0.047834	-0.238016
8	6	0	-2.661696	-0.371831	0.446591
9	6	0	-1.527465	0.424236	0.381765
10	1	0	-0.647505	0.093541	0.923802
11	6	0	-2.734612	1.988850	-0.982886
12	6	0	-3.862179	1.192636	-0.921059
13	1	0	-4.444619	-6.139877	0.638870
14	1	0	-2.735303	-4.527866	1.513703
15	1	0	-6.666583	-2.863287	-0.998170
16	1	0	-6.424986	-5.240665	-0.581626
17	1	0	-2.806480	2.930868	-1.510745
18	1	0	-4.751793	1.538370	-1.427807
19	6	0	1.938154	1.667879	0.508109
20	6	0	2.018223	0.629772	-0.447578

21	6	0	3.109611 2.0	03615 1.221135	
22	6	0	3.196520 -0.0	66802 -0.654280	
23	1	0	1.140248 0.3	53432 -1.021540	
24	6	0	4.293594 1.3	19528 1.005064	
25	1	0	3.105570 2.8	26376 1.923808	
26	6	0	4.361373 0.2	64150 0.069819	
27	1	0	3.232599 -0.8	371874 -1.379636	
28	1	0	5.187200 1.6	01995 1.550270	
29	6	0	5.574673 -0.4	-36996 -0.148214	
30	6	0	7.833802 -1.7	40700 -0.559034	
31	6	0	8.991087 -1.4	13917 0.176637	
32	6	0	7.899756 -2.7	71839 -1.518097	
33	6	0	10.179365 -2.2	102851 -0.044773	
34	1	0	8.942425 -0.6	0.915238	
35	6	0	9.093115 -3.4	-54269 -1.731967	
36	1	0	7.010118 -3.0	24606 -2.085351	
37	6	0	10.234745 -3.2	123089 -0.997743	
38	1	0	9.133768 -4.2	46678 -2.473161	
39	6	0	0.663480 2.3	65455 0.707991	
40	7	0	-4.955352 -0.9	001557 -0.259262	
41	16	0	-2.659284 -1.	717476 1.603364	
42	6	0	6.615897 -1.0	38691 -0.337377	
43	6	0	-1.520293 1.6	0.366946	
44	6	0	-0.297684 2.4	-16636 -0.452586	
45	6	0	-6.248014 -0.3	384788 -0.750934	
46	1	0	-6.341047 0.6	47378 -0.403516	
47	1	0	-7.034113 -0.9	940477 -0.233867	

48	6	0	0.046362	3.211567	-1.520570
49	6	0	1.216390	4.039575	-1.487151
50	6	0	-0.693177	3.276285	-2.745644
51	7	0	2.156620	4.725016	-1.478600
52	7	0	-1.258340	3.341399	-3.761024
53	6	0	0.255159	2.976727	1.871157
54	6	0	0.976795	2.946936	3.107606
55	6	0	-0.976272	3.710340	1.922420
56	7	0	1.519681	2.945128	4.136966
57	7	0	-1.968873	4.315922	1.970250
58	1	0	11.164201	-3.658065	-1.167628
59	1	0	11.065266	-1.843747	0.526984
60	6	0	-6.457096	-0.455103	-2.273060
61	1	0	-5.666540	0.105373	-2.782698
62	1	0	-6.353205	-1.490314	-2.614102
63	6	0	-7.829862	0.094760	-2.673474
64	1	0	-7.969411	0.043421	-3.756621
65	1	0	-8.641513	-0.473944	-2.206189
66	1	0	-7.945107	1.142197	-2.373697
67	8	0	-3.308000	-1.259647	2.842320
68	8	0	-1.313109	-2.307748	1.671670

Total Energy (HF) =-2246.0003846 Hartrees

PTZ 6. Calculation method: B3LYP/6-31G(d,p)

Standard orientation:

Center	Atomic		Atomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Z
	6		5 61 100 1	1 600100	2 277265
1	0	0	-3.014661	-4.088490	-2.277203
2	6	0	-4.513704	-4.3/8560	-1.4900/5
3	6	0	-4.458627	-3.157298	-0.816115
4	6	0	-5.473329	-2.184594	-0.934526
5	6	0	-6.589036	-2.531461	-1.723973
6	6	0	-6.655215	-3.761247	-2.370807
7	6	0	-4.145007	-0.365406	0.050175
8	6	0	-2.994339	-1.161473	0.258943
9	6	0	-1.751558	-0.615255	0.549645
10	1	0	-0.916423	-1.296343	0.679437
11	6	0	-2.737618	1.570380	0.531970
12	6	0	-3.975569	1.027114	0.238013
13	1	0	-5.668284	-5.636995	-2.800285
14	1	0	-3.687689	-5.071840	-1.370711
15	1	0	-7.405407	-1.835983	-1.859515
16	1	0	-7.530212	-3.986204	-2.972907
17	1	0	-2.667644	2.639199	0.699083
18	1	0	-4.817002	1.700025	0.151650
19	6	0	1.865750	0.025932	1.461030
20	6	0	1.994761	-0.343649	0.103875
21	6	0	2.982866	-0.159954	2.304423
22	6	0	3.165440	-0.901899	-0.382195
23	1	0	1.157774	-0.206225	-0.571869

24	6	0	4.161707	-0.700673	1.818088
25	1	0	2.941192	0.143978	3.342694
26	6	0	4.276449	-1.091440	0.466447
27	1	0	3.236867	-1.195739	-1.423517
28	1	0	5.013373	-0.821983	2.478236
29	6	0	5.483433	-1.648579	-0.028342
30	6	0	7.733030	-2.682255	-0.946646
31	6	0	8.833568	-2.875139	-0.087063
32	6	0	7.850329	-3.047703	-2.303055
33	6	0	10.017093	-3.419011	-0.576051
34	1	0	8.745111	-2.594879	0.957299
35	6	0	9.038441	-3.590529	-2.781907
36	1	0	7.004284	-2.900254	-2.966050
37	6	0	10.123713	-3.777734	-1.922139
38	1	0	9.119037	-3.868706	-3.828330
39	6	0	0.595401	0.596760	1.936098
40	7	0	-5.368848	-0.911857	-0.333462
41	16	0	-3.161328	-2.924944	0.365702
42	6	0	6.520310	-2.125480	-0.451820
43	6	0	-1.578174	0.773324	0.660204
44	6	0	-6.579264	-0.072511	-0.245548
45	1	0	-6.486848	0.539954	0.655284
46	1	0	-7.423145	-0.741587	-0.059795
47	6	0	1.678925	6.144947	-1.355328
48	6	0	2.832815	6.806175	-0.843511
49	6	0	1.028996	6.751707	-2.469011
50	7	0	3.778481	7.334012	-0.412655

51	7	0	0.482655	7.230589	-3.380544
52	6	0	0.117623	0.461113	3.223345
53	6	0	0.719429	-0.348420	4.239746
54	6	0	-1.057666	1.161288	3.652916
55	7	0	1.168207	-0.993060	5.098911
56	7	0	-1.995547	1.741594	4.025003
57	6	0	-0.255189	1.345315	0.952307
58	6	0	0.224900	2.512017	0.365607
59	6	0	-0.414479	3.131227	-0.778410
60	6	0	1.408903	3.181067	0.866871
61	6	0	0.051821	4.280600	-1.331301
62	1	0	-1.260435	2.632893	-1.235835
63	6	0	1.866445	4.341264	0.330388
64	1	0	1.923193	2.760398	1.722720
65	6	0	1.207666	4.957280	-0.795441
66	1	0	-0.432574	4.697513	-2.208030
67	1	0	2.739561	4.828514	0.751204
68	1	0	11.049230	-4.201701	-2.299769
69	1	0	10.859135	-3.563705	0.093930
70	8	0	-3.677674	-3.258534	1.702871
71	8	0	-1.924976	-3.567964	-0.107624
72	6	0	-6.864853	0.817626	-1.466742
73	1	0	-6.946993	0.198896	-2.366335
74	1	0	-6.016895	1.487499	-1.644457
75	6	0	-8.145883	1.635519	-1.273582
76	1	0	-9.017521	0.986885	-1.131938
77	1	0	-8.075467	2.289541	-0.397424

Total Energy (HF) =-2477.0471742 Hartrees

TD-DFT Calculation data

Calculation method: B3LYP/6-31G(d,p) and CAM-B3LYP/6-31G(d,p) level in dichloromethane solvent/ gas phase.

TD-DFT of PTZ 1 in DCM solvent. Calculation method: B3LYP/6-31G(d,p)

Excitation energies and oscillator strengths:

Singlet-A 2.9125 eV 425.69 nm f=1.3216 Excited State 1: $<S^{**2}>=0.000$ 116 ->117 0.69773 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1647.93945641Copying the excited state density for this state as the 1-particle RhoCI density. Singlet-A 3.5073 eV 353.50 nm f=1.1583 Excited State 2: <S**2>=0.000 0.69505 115 ->117 Singlet-A 3.7968 eV 326.55 nm f=0.0031 Excited State 3: <S**2>=0.000 0.55801 116 ->118 116 ->119 0.32969 116 ->120 0.18371 Singlet-A 3.9474 eV 314.09 nm f=0.0290 Excited State 4: <S**2>=0.000 114 ->117 0.46513 -0.26610 116 ->118 116 ->119 0.42088

Excited State 5:	Singlet-A	4.1333 eV	299.96 nm	f=0.0269
<s**2>=0.000</s**2>				
114 ->117	0.43616			
116 ->118	0.11148			
116 ->119	-0.40278			
116 ->120	0.32185			
Excited State 6:	Singlet-A	4.1994 eV	295.24 nm	f=0.0764
<s**2>=0.000</s**2>				
114 ->117	-0.27536			
116 ->118	-0.22503			
116 ->119	0.12022			
116 ->120	0.55979			
116 ->123	0.13370			
Excited State 7: <pre><s**2>=0.000</s**2></pre>	Singlet-A	4.3233 eV	286.78 nm	f=0.0011
110 ->117	0.33805			
115 ->121	0.22268			
116 ->121	0.57342			
Excited State 8: <\$**2>=0.000	Singlet-A	4.3710 eV	283.65 nm	f=0.0026
113 ->117	0.60389			
115 ->118	-0.23348			
116 ->123	-0.23593			
Excited State 9:	Singlet-A	4.5319 eV	273.58 nm	f=0.0087
<s**2>=0.000</s**2>				
113 ->117	0.32998			
114 ->118	-0.10324			
115 ->118	0.47921			
116 ->118	0.17036			
116 ->123	0.26541			
Excited State 10 <s**2>=0.000</s**2>	: Singlet-A	4.5531 eV	272.31 nm	f=0.0002
112 ->117	0.45109			
112 ->118	0.12487			
115 ->122	0.26567			

116 ->122 0.43512

TD-DFT of PTZ 2 in gas phase. Calculation method: B3LYP/6-31G(d,p)

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 1.9323 eV 641.64 nm f=0.0600 <S**2>=0.000 148 ->149 0.70132 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -2095.55190839Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 2.5287 eV 490.30 nm f=0.1934 Singlet-A $<S^{**2}>=0.000$ 146 ->149 0.13433 147 ->149 0.11035 148 ->150 0.67452 Excited State 3: Singlet-A 2.5565 eV 484.98 nm f=0.2569 <S**2>=0.000 147 ->149 0.67970 147 ->150 0.15010 Excited State 4: 2.8935 eV 428.49 nm f=0.0920 Singlet-A $<S^{**2}>=0.000$ 146 ->149 0.68240 148 ->150 -0.13071 Excited State 5: 3.1089 eV 398.80 nm f=0.6022 Singlet-A $<S^{**2}>=0.000$ 147 ->149 -0.14801 147 ->150 0.67631 Excited State 6: 3.3608 eV 368.91 nm f=0.0205 Singlet-A <S**2>=0.000 143 ->149 0.10793 145 ->149 0.56524 -0.38050 146 ->150

Excited State 7 <s**2>=0 000</s**2>	7: Singlet-A	3.5087 eV 353.36 nm f=0.1639
145 ->149	0.36242	
146 ->150	0.57118	
148 ->152	0.11418	
Excited State 8	8: Singlet-A	3.6469 eV 339.97 nm f=0.0014
<s**2>=0.000</s**2>	-	
144 ->149	0.70167	
Excited State 9 <s**2>=0.000</s**2>	9: Singlet-A	3.6615 eV 338.62 nm f=0.0150
141 ->149	0.49716	
142 ->149	-0.39358	
143 ->149	-0.27014	
Excited State 1	0: Singlet-A	3.7090 eV 334.28 nm f=0.0426
<s**2>=0.000</s**2>		
142 ->149	-0.38546	
143 ->149	0.53112	
143 ->150	0.11864	
148 ->151	-0.10424	
148 ->152	-0.12052	
Excited State 1	1: Singlet-A	3.7986 eV 326.40 nm f=0.0542
<s**2>=0.000</s**2>		
140 ->149	-0.15840	
141 ->149	0.31644	
142 ->149	0.22334	
143 ->149	0.24061	
145 ->150	-0.11878	
148 ->151	0.32799	
148 ->152	0.29750	
148 ->154	-0.11899	
Excited State 1 <s**2>=0.000</s**2>	2: Singlet-A	3.8089 eV 325.52 nm f=0.0060
140 ->149	0.62099	
140 ->150	-0.18216	

148 ->151	0.19503		
148 ->152	0.12862		
Excited State	13: Singlet-A	3.8257 eV 324.08 nm f=0.0299	
<s**2>=0.000</s**2>)		
140 ->149	-0.18749		
141 ->149	-0.32598		
142 ->149	-0.32922		
145 ->150	0.13337		
148 ->151	0.38758		
148 ->152	0.16808		
148 ->154	-0.13210		
Excited State	14: Singlet-A	3.9562 eV 313.39 nm f=0.0716	
<s**2>=0.000</s**2>)		
145 ->150	0.10277		
146 ->150	-0.10320		
148 ->151	-0.41288		
148 ->152	0.51799		
Excited State	15: Singlet-A	4.0138 eV 308.89 nm f=0.1551	
<s**2>=0.000</s**2>)		
139 ->149	-0.20533		
141 ->149	0 12207		
1.10 1.10	0.13297		
143 ->149	0.13297 0.11980		

TD-DFT of PTZ 3 in gas phase. Calculation method: B3LYP/6-31G(d,p)

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 1.6026 eV 773.62 nm f=0.2219 $<S^{**2}>=0.000$ 167 ->169 0.17017 168 ->169 0.67460 168 ->170 0.10295 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -2326.61092378 Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State <\$**2>=0.000	2:	Singlet-A	2.1552 eV	575.28 nm	f=0.1193
166 ->169		0.57619			
167 ->169		0.39641			
Excited State <\$**2>=0.000	3:	Singlet-A	2.2156 eV	559.59 nm	f=0.0705
165 ->169		-0.10629			
166 ->169		0.24528			
167 ->169		-0.39336			
168 ->170		0.50677			
Excited State <\$**2>=0.000	4:	Singlet-A	2.4562 eV	504.79 nm	f=0.5400
165 ->169		0.29692			
166 ->169		-0.25335			
166 ->170		-0.10510			
167 ->169		0.29282			
168 ->169		-0.18540			
168 ->170		0.45750			
Excited State	5:	Singlet-A	2.6357 eV	470.40 nm	f=0.1273
<s**2>=0.000</s**2>		C			
165 ->169		0.60516			
166 ->169		0.10492			
166 ->170		0.19409			
167 ->169		-0.18400			
167 ->170		-0.16486			
168 ->170		-0.12162			
Excited State	6:	Singlet-A	2.9429 eV	421.31 nm	f=0.3088
<s**2>=0.000</s**2>		C			
162 ->169		-0.11093			
163 ->169		0.14942			
165 ->169		0.11428			
166 ->169		0.13631			
167 ->170		0.64264			

Excited State <\$**2>=0.000	7:	Singlet-A	3.1563 eV	392.82 nm	f=0.8472
162 ->169		0.16705			
165 ->169		-0.10282			
166 ->170		0.63392			
167 ->169		0.15649			
Excited State <\$**2>=0.000	8:	Singlet-A	3.2985 eV	375.88 nm	f=0.0572
162 ->169		0.23249			
163 ->169		0.62499			
166 ->170		-0.11184			
167 ->170		-0.11385			
Excited State <\$**2>=0.000	9:	Singlet-A	3.3018 eV	375.50 nm	f=0.0010
164 ->169		0.70422			
Excited State <\$**2>=0.000	10:	: Singlet-A	3.3672 eV	368.21 nm	f=0.0412
158 ->169		0.19087			
160 ->169		0.32782			
162 ->169		0.49404			
163 ->169		-0.16809			
165 ->170		0.20229			
168 ->172		-0.10235			

TD-DFT of PTZ 4 in DCM solvent. Calculation method: B3LYP/6-31G(d,p)

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 3.1114 eV 398.48 nm f=2.3897 <S**2>=0.000 124 ->125 0.70011 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1798.31950823 Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: <s**2>=0.000</s**2>	: Singlet-A	3.7183 eV	333.44 nm	f=0.0456
123 ->126	0.14996			
124 ->126	0.67563			
Excited State 3	: Singlet-A	3.7907 eV	327.08 nm	f=0.1243
<s**2>=0.000</s**2>	C			
123 ->125	0.69189			
Excited State 4	: Singlet-A	4.0814 eV	303.78 nm	f=0.0352
<s**2>=0.000</s**2>				
124 ->127	0.67080			
124 ->128	0.10187			
Excited State 5	: Singlet-A	4.3502 eV	285.01 nm	f=0.0222
<s**2>=0.000</s**2>				
122 ->126	0.12085			
123 ->126	0.57154			
124 ->126	-0.12043			
124 ->127	-0.11186			
124 ->128	0.32686			
Evolted State 6	Singlet A	4 2000 oV	202 27 nm	$f_{-0.0044}$
	. Singlet-A	4.3909 6 V	202.37 1111	1-0.0044
$<5^{**2} \ge 0.000$	0 22027			
123 -> 120 122 > 120	-0.52957			
123 -> 128	0.15729			
124 ->126	0.12270			
124 ->128	0.55296			
Excited State 7	: Singlet-A	4.3978 eV	281.92 nm	f=0.0000
<s**2>=0.000</s**2>	0			
120 ->125	-0.45195			
123 ->130	-0.12385			
124 ->130	0.51407			
Excited State 8	: Singlet-A	4.4880 eV	276.26 nm	f=0.0360
<s**2>=0.000</s**2>	-			
122 ->125	0.66430			
124 ->129	-0.16278			

Excited State 9:	Singlet-A	4.5336 eV	273.48 nm	f=0.0001
<s**2>=0.000</s**2>				
118 ->125	0.67046			
118 ->127	0.16324			
Excited State 10:	Singlet-A	4.5558 eV	272.15 nm	f=0.0023
<s**2>=0.000</s**2>				
121 ->125	0.57467			
121 ->127	0.14222			
123 ->131	-0.18634			
124 ->131	0.31599			

TD-DFT of PTZ 5 in DCM solvent. Calculation method: CAM-B3LYP/6-

31G(d,p)

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 3.0709 eV 403.74 nm f=0.9274 $<S^{**2}>=0.000$ 153 ->157 -0.18660 155 ->157 0.21405 155 ->158 0.15291 156 ->157 0.60913This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -2244.91533187 Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 3.1813 eV 389.73 nm f=0.5401 <S**2>=0.000 151 ->157 0.13725 152 ->157 -0.12080 0.59898 155 ->157 155 ->158 0.10217 -0.20616 156 ->157 156 ->158 0.17665 Excited State 3: Singlet-A 3.7367 eV 331.80 nm f=0.2581 <S**2>=0.000

153 ->158	-0.19859	
155 ->157	-0.18536	
155 ->158	0.33978	
155 ->160	-0.10452	
156 ->158	0.52123	
Excited State	4: Singlet-A	3.7762 eV 328.33 nm f=0.5413
<s**2>=0.000</s**2>	C	
151 ->158	0.10707	
152 ->158	-0.10876	
153 ->157	0.18100	
155 ->158	0.51730	
156 ->157	-0.13009	
156 ->158	-0.32960	
156 ->160	-0.13745	
Excited State	5: Singlet-A	4.1645 eV 297.72 nm f=0.0156
$=0.000$		
150 ->157	0.50795	
150 ->158	-0.19233	
151 ->157	0.36679	
151 ->158	-0.12430	
156 ->162	0.10069	
Excited State	6: Singlet-A	4.3216 eV 286.90 nm f=0.0363
<s**2>=0.000</s**2>		
148 ->157	-0.29297	
148 ->158	-0.19935	
152 ->157	0.22744	
152 ->158	0.15322	
153 ->157	0.20562	
155 ->159	0.40416	
156 ->159	0.16360	
Excited State	7: Singlet-A	4.4144 eV 280.86 nm f=0.1381
<s**2>=0.000</s**2>		
147 ->157	-0.22136	
152 ->157	-0.13997	
153 ->157	0.53940	
155 ->158	-0.11664	

155 ->159	-0.16646		
156 ->157	0.18754		
Excited State	8: Singlet-A	4.5606 eV 271.86 nm f=0.0172	
<s**2>=0.000</s**2>	-		
149 ->157	0.42133		
149 ->158	-0.32931		
149 ->160	-0.28321		
150 ->157	0.12112		
151 ->157	-0.11340		
152 ->157	0.18722		
155 ->159	-0.13193		
Excited State	9: Singlet-A	4.5848 eV 270.42 nm f=0.0884	
<s**2>=0.000</s**2>			
145 ->157	-0.14548		
148 ->157	-0.10223		
149 ->157	-0.22703		
149 ->158	0.16848		
149 ->160	0.14625		
150 ->157	0.18969		
151 ->157	-0.17840		
152 ->157	0.33233		
153 ->158	0.14977		
155 ->157	0.11557		
155 ->159	-0.28799		
156 ->159	-0.12555		
Excited State	10: Singlet-A	4.7739 eV 259.71 nm f=0.0296	
<s**2>=0.000</s**2>			
145 ->157	-0.10239		
148 ->157	0.43580		
148 ->158	0.11777		
150 ->157	0.11142		
151 ->157	-0.21472		
153 ->158	0.14362		
155 ->159	0.28684		

156 ->160 0.18993

S51

TD-DFT of PTZ 6 in gas phase. Calculation method: B3LYP/6-31G(d,p)

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 2.0382 eV 608.31 nm f=0.1142 <S**2>=0.000 175 ->177 0.64862 176 ->177 -0.25827 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -2476.97227296Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 2.0946 eV 591.91 nm f=0.4312 <S**2>=0.000 174 ->177 0.21628 175 ->177 0.26238 176 ->177 0.60116 176 ->178 0.15554 Excited State 3: Singlet-A 2.5609 eV 484.14 nm f=0.1125 <S**2>=0.000 174 ->177 -0.48186 175 ->178 0.14473 176 ->178 0.48205 Excited State 4: Singlet-A 2.8123 eV 440.86 nm f=0.6184 $<S^{**2}>=0.000$ 172 ->177 0.13580 174 ->177 0.38511 175 ->178 -0.20806 176 ->177 -0.22208 176 ->178 0.47448 Excited State 5: 3.0633 eV 404.74 nm f=0.9158 Singlet-A $<S^{**2}>=0.000$ 172 ->177 -0.13967 174 ->177 0.19778 174 ->178 0.15720 175 ->178 0.61985 176 ->177 -0.14098

Excited State	6: Singlet-A	3.1944 eV	388.13 nm f=0.0002
<s**2>=0.000</s**2>	0.70(10		
1/3->1//	0.70618		
Excited State	7: Singlet-A	3.2055 eV	386.79 nm f=0.1031
<s**2>=0.000</s**2>			
172 ->177	0.62730		
174 ->178	-0.19402		
175 ->178	0.19581		
Excited State	8: Singlet-A	3.2993 eV	375.79 nm f=0.0048
<s**2>=0.000</s**2>			
168 ->177	0.18303		
170 ->177	0.51022		
171 ->177	-0.35645		
174 ->178	0.24100		
Excited State	9: Singlet-A	3.3125 eV	374.29 nm f=0.0051
<s**2>=0.000</s**2>	-		
168 ->177	-0.27308		
170 ->177	0.47623		
171 ->177	0.37303		
174 ->178	-0.22327		
Excited State 1	0: Singlet-A	3.4175 eV	362.79 nm f=0.0721
<s**2>=0.000</s**2>	-		
167 ->177	0.14129		
171 ->177	0.29895		
172 ->177	0.19077		
174 ->177	-0.12591		
174 ->178	0.53730		
176 ->181	0.10326		