A novel S-scheme heterojunction based on 0D/3DCeO₂/Bi₂O₂CO₃ for photocatalytic degradation of organic pollutants

Chuantao Wang, Yuechen Dang, Xiangxiang Pang, Le Zhang, Yujie Bian, Wen Duan, Chunming Yang^{*}, Yanzhong Zhen^{*}, Feng Fu^{*}

College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an 716000, P. R. China

*Corresponding authors: Chunming Yang, Yanzhong Zhen, Feng Fu *E-mail:* chunmingyang@yau.edu.cn (C. Yang), zhenyanzhong@yau.edu.cn (Z. Zhen), yadxfufeng@126.com (F. Fu).

Fig. S1. N_2 adsorption/desorption isotherms and BJH pore diameter distribution of $Bi_2O_2CO_3$ and CB-15.

Fig. S2. SEM images of (a) Bi₂O₂CO₃, (b) CB-10, and (c) CB-20.

Fig. S3. XPS spectra of CB-15.

Semiconductor	$E_{\rm VB}({ m eV})$	$E_{\rm CB}~({ m eV})$	$E_{g}\left(\mathrm{eV} ight)$
Bi ₂ O ₂ CO ₃	-0.01	3.27	3.28
CeO ₂	-0.69	1.72	2.41

Table S1. E_{VB} , E_{CB} and E_{g} of Bi₂O₂CO₃ and CeO₂.

Fig. S4. Photodegradation kinetics curves of TC and AM.

Photocata- lyst	Dosage (mg)	Concer of pol (mg	ntration lutant L ⁻¹)	Light source	Volume (mL)	Removal efficiency (%)	Rate constant (min ⁻¹)	Time (min)	Ref.
	MB	TC			. /	· /			
Cu ₂ ONPs/ Bi ₂ O ₂ CO ₃	500	10	/	250 W halide lamp	100	94	0.0132	20	1
MgAl ₂ O ₄ /Ce O ₂ /Mn ₃ O ₄	100	5	/	150 W Xe lamp	100	94.6	0.0160	180	2
Ag ₂ CO ₃ /Bi ₂ O ₂ CO ₃	100	10	/	300 W Xe lamp	100	96	0.0233	120	3
CeO ₂ /g-C ₃ N 4	50	10	/	36 W UV lamp	100	90.1	0.0300	180	4
g-C ₃ N ₄ /Bi ₂ O ₂ CO ₃	50	/	20	1000 W Xenon lamp	100	~94	0.00737	360	5
In ₂ S ₃ /Bi ₂ O ₂ CO ₃	30	/	10	400 W Xenon lamp	30	70	0.00537	180	6
β-Bi ₂ O ₃ @C eO ₂	50	/	10	500 W Xenon lamp	100	~92	0.0110	180	7
BiOI/g-C ₃ N 4/CeO ₂	50	/	20	300 W Xenon lamp	30	91.6	0.0205	120	8
CeO ₂ /Bi ₂ O ₂ CO ₃ 200	/ 20	500 W	100 (MB)	98 (MB)	0.0256 (MB)	120	This		
				ле іатр	40 (TC)	79 (TC)	0.0114 (TC)		work

Table S2. The comparison of photocatalytic performance of CB-15 and otherphotocatalysts for the degradation of MB and TC.

Fig. S5. (a) TEM and (b) HR-TEM images of CB-15 after photodegradation experiments.

References:

- 1. S.-L. Lin, W.-Q. Cui, X.-G. Li, H. Sui and Z.-S. Zhang, Catal. Today, 2017, 297, 237-245.
- 2. J. Li, S. Wang, G. Sun, H. Gao, X. Yu, S. Tang, X. Zhao, Z. Yi, Y. Wang and Y. Wei, Mater. *Today Chem.*, 2021, **19**, 100390.
- 3. T.-T. Li, X.-L. Hu, C.-C. Liu, C.-M. Tang, X.-K. Wang and S.-L. Luo, *J. Mol. Catal. A-Chem.*, 2016, **425**, 124-135.
- 4. Y.-F. Miao, R.-T. Guo, J.-W. Gu, Y.-Z. Liu, G.-L. Wu, C.-P. Duan and W.-G. Pan, *ACS Appl. Nano Mater.*, 2021, **4**, 4902-4911.
- 5. H.-P. Zhao, G.-F. Li, F. Tian, Q.-T. Jia, Y.-L. Liu and R. Chen, *Chem. Eng. J.*, 2019, **366**, 468-479.
- 6. H.-X. Fan, H.-L. Zhou, W.-J. Li, S.-N. Gu and G.-W. Zhou, *Appl. Sci.*, 2020, **504**, 144351.
- 7. X.-Y. Yang, Y.-M. Zhang, Y.-L. Wang, C.-L. Xin, P.-Z. Zhang, D. Liu, B.-B. Mamba, K.-K. Kefeni, A. T. Kuvarega and J.-Z. Gui, *Chem. Eng. J.*, 2020, **387**, 124100.
- X.-D. Jiang, S.-F. Lai, W.-C. Xu, J.-Z. Fang, X. Chen, J.-Z. Beiyuan, X.-W. Zhou, K.-C. Lin, J.-X. Liu and G.-C Guan, *J. Alloys Compd.*, 2019, 809, 151804.