Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Materials for

Preparation of resin-based composites containing Ce and cations polymer with

abundant promotional affinity sites for phosphate capture

Xiangcheng Shan^{1a}, Liyu Yang^{1a}, Huarong Yang^a, Guilin Song^a, Zuoyi Xiao^a, Chang-

sik Ha^b, Shangru Zhai*^a, Qingda An*^a

^a Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034,

China

^b Department of Polymer Science and Engineering, Pusan National University, Republic of Korea

¹ They contributed equally to this work.

*Corresponding authors.

Tel: (+86) 411-8632-3649; Fax: (+86) 411-8632-364679

E-mail address: <u>zhaisrchem@163.com</u> (Shangru Zhai); <u>anqingdachem@163.com</u> (Qingda An)

Fig. S1 XRD pattern of D301.

Fig. S2 EDS results of C, N, O, Ce, and P of D301-Ce⁺ after phosphate adsorption.

Fig. S3 The pore size distributions of (A) D301; (B) D301-Ce; (C) D301-Ce⁺; (D) D301-Ce⁺-P.

Fig. S4 Point-line graph of lnK_d and 1/T in the adsorption thermodynamic calculations.

Fig. S5 Fitted point-line figure of lnQ_e vs ε^2 of the D-R model.

Model	Parameter	Value
	Q_m	397.23
Langmuir model	K_L	0.002
	R^2	0.993
	п	1.65
Freundlich model	K_F	4.83
	R^2	0.974
	K _{DR}	-1.43×10 ⁻⁶
	X_m	246.74
D-R model	R^2	0.76
	E	0.59

Table. S1 Fitted parameters of the Langmuir, Freundlich, and D-R models.

Table. S2 Fitted parameters of the Pseudo-first-order, pseudo-second-order kinetic models and

Model	Parameter	25 mg P/L	50 mg P/L
	Qe	21.99	40.61
Pseudo-first-order	K_{f}	5.71×10^{-3}	2.72×10^{-3}
	R^2	0.96	0.94
	Qe	25.00	50.00
Pseudo-second-order	K_s	6.35×10^{-4}	1.89×10^{-4}
	h	0.40	0.47
	R^2	0.99	0.98
Particle	K_d	3.81 × 10 ⁻³	1.87
diffusion	R^2	0.21	0.97
Pore	K _i	0.02	1.87
diffusion	R^2	0.98	0.97

diffusion-based (particle diffusion, and pore diffusion) models.

Table. S3 The chi-square test and the sum of the squares of errors (SSE) of pseudo-first-order and pseudo-second-order models.

Model	Parameter	25 mg P/L	50 mg P/L
Pseudo-first-order	reduced chi-square	2.39	0.23
Pseudo-second-order	SSE	19.20	4.80

Text. S1 Details of characterization methods and instruments.

The functional groups of the samples were detected by a Fourier transform infrared spectrometer (FTIR, Japan). The crystalline phase of the samples was recorded on an X-ray diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å) (Shimadzu XRD-7000S, Japan). The surface micromorphology of the samples was observed by a thermal field emission scanning electron microscope system (SEM, JSM-7800F, Japan) equipped with an X-Max50 energy spectrometer and backscattered electron diffraction analyzer (EDS) from Oxford Instruments. The samples' specific surface area and pore structure were analyzed by Brunauer-Emmett-Teller (BET) method with JW-BK222 (China) at 77 K. Thermogravimetric analysis (TGA) was conducted at the temperature ranging from 30 to 800 °C by TGA801 (USA). The samples' element composition and element valence were confirmed by X-ray photoelectron spectroscopy (XPS, ESCALAB250, USA). The surface potentials of the samples at different pH values were detected by a Zetasizer (3000HSA, Japan). The element content in samples and solutions were detected by an inductively coupled plasma mass spectrometry (ICP-MS, Thermo Scientific[™], USA)

Text. S2 Calculation equations of the thermodynamic parameters.

Several thermodynamic parameters, viz., several thermodynamic parameters, e.g., enthalpy change (ΔH° , kJ/mol), entropy change (ΔS° , J/(mol·K)) and Gibbs free energy change (ΔG° , kJ/mol) are calculated by the follow equation¹:

$$K_d = \frac{Q_e}{C_e} \tag{S1}$$

$$\ln K_{d} = \frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{R} \cdot \frac{1}{T}$$
(S2)

$$\Delta G^{\circ} = \Delta H^{\circ} - \Delta S^{\circ} \cdot T \tag{S3}$$

According to the Van't Hoff equation, the equilibrium constant K_d is obtained from the slope of Q_e against C_e at different temperatures. The values of ΔH° and ΔS° are determined from the slope and intercept of a plot of $\ln K_d$ versus 1/T.

Text. S3 Equations of the Langmuir model, Freundlich model, D-R model, and the calculation

methods of related parameters.

Langmuir isotherm :

$$Q_{e} = \frac{Q_{m}K_{L}C_{e}}{1 + K_{L}C_{e}}$$
(S4)

Freundlich isotherm :

$$Q_e = K_F \frac{c_e^{\frac{1}{n}}}{c_e^{\frac{1}{n}}}$$
(S5)

Where C_e is the equilibrium concentration (mg/L) and Q_e is the amount adsorbed per unit weight of adsorbent. Q_m (mg P/g) represents the maximum adsorption capacity. Langmuir constant K_L (L/mg) is related to intensity of adsorption. Values of Freundlich constants viz., K_F (mg P/g) and n are calculated from the intercepts and slopes of the linear plots of log Q_e vs log C_e .

D-R isotherm :

$$\ln Q_e = \ln X_m - K_{DR} \varepsilon^2 \tag{S6}$$

Where X_m is the adsorption capacity (mg P/g) and K_{DR} is the constant related to adsorption energy (mol²/kJ²). The values of K_{DR} and X_m are computed from the slope and intercept of the plot ln Q_e vs ε^2 . Polanyi potential (ε) can be calculated using the following equation:

$$\varepsilon = RTln(1 + \frac{1}{C_e}) \tag{S7}$$

where T is the temperature (K) and R is the gas constant (8.314 J/(mol·K)). The values of K_{DR} are used to calculate the mean free energy E (kJ/mol) of the adsorption².

$$E = -(2K_{DR})^{-0.5}$$
(S8)

Text. S4 Equations of the pseudo-first-order, pseudo-second-order, particle diffusion, intraparticle diffusion, and the calculation methods of related parameters.

Pseudo-first-order:

$$\log\left(Q_e - Q_t\right) = \log Q_e - \frac{K_f}{2.303}t\tag{S9}$$

where Q_e and Q_t are the adsorption capacity at equilibrium and at time t, respectively (mg P/g), K_f is the rate constant of pseudo-first order adsorption (min⁻¹). Linear plots of log ($Q_e - Q_t$) against t gives a straight line that indicates the applicability of pseudo-first-order model. K_f and Q_e can be determined from the slope and intercept.

Pseudo-second-order:

$$\frac{t}{Q_t} = \frac{1}{h} + \frac{t}{Q_e}$$
(S10)

in which $Q_t = Q_e^2 K_s \cdot t/(1 + Q_e K_s \cdot t)$ is the amount of anion on the surface of the sorbents at any time, t (mg P/g), K_s is the pseudo-second-order rate constant (g/(mg·min)), Q_e is the amount of phosphate adsorbed at equilibrium (mg P/g), and the initial adsorption rate, $h = K_s Q_e^2$. The value of Q_e (1/slope), K_s (slope²/intercept) and h (1/intercept) of the pseudo-second-order equation can be found out experimentally by plotting t/Q_t against t.

Particle diffusion :

$$\ln\left(|1 - \frac{C_t}{C_e}|\right) = -K_p t \tag{S11}$$

where K_p is the particle rate constant (min⁻¹). The value of particle rate constant is obtained by the slope of ln ($|1 - C_t/C_e|$) against *t*.

Intra-particle diffusion :

$$Q_t = K_i t^{1/2} \tag{S12}$$

where K_i is the intra-particle diffusion coefficient (mg P/g min^{1/2}). The slope of the plot of Q_t against $t^{1/2}$ will give the value of the intra-particle diffusion coefficient³. **Text. S5** The calculation equations of parameters on the adsorption experiment of adsorbent in simulated dynamic wastewater, and details of the Thomas and Adams-Bohart models.

The effluent volume (V_E , mL), total amount of phosphate adsorbed (Q_{total} , mg), empty bed contact time (EBCT, min), adsorbed phosphate amount at equilibrium (Q_e , mg P/g) in the fixed-bed column experiments were calculated by the following equations:

$$V_E = vt_e \tag{S13}$$

$$Q_{total} = \int_{0}^{V_{E}} (c_{0} - c_{t}) dV$$
(S14)

$$EBCT = \frac{v}{v}$$
(S15)

$$Q_e = \frac{Q_{total}}{m}$$
(S16)

in which v (mL/min) and t_e (min) are the flow rate through the column and the time of the breakthrough point, m is the mass of D301 or D301-Ce⁺.

The Thomas model assumes that the adsorption process is controlled by mass transfer between phases, the formula is depicted as follow:

$$\frac{c_t}{c_0} = \frac{1}{1 + e^{\frac{K_T Q_0 m}{v} - K_T c_0 t}}$$
(S17)

where Q_o (mg P/g) is adsorption capacity, K_T (L/(min·mg)) is Thomas constant, v (mL/min) is flow rate, c_0 and c_t is the primeval concentration of phosphate and concentration of the effluent solution at time t (min), m (g) is the mass of D301 or D301-Ce⁺.

The Adams-Bohart model is usually applied to describe the front part of breakthrough curve, the formula is depicted as follow:

$$\frac{c_t}{c_0} = e^{K_{AB}c_0t - K_{AB}N_0\frac{Z}{F}}$$
(S18)

where N_0 (mg P/L) is the saturated concentration, K_{AB} (L/(min·mg)) represents the dynamic constant, Z (cm) is the height of bed column and F (cm/min) is the superficial velocity⁴.

- M. Liu, S. Li, N. Tang, Y. Wang, X. Yang and S. Wang, *Journal of Cleaner Production*, 2020, 265.
- 2. A. Sowmya and S. Meenakshi, Int J Biol Macromol, 2014, 64, 224-232.
- 3. S. M. Appunni Sowmya, *Chemical Engineering Journal*, 2014, 257, 45-55.
- Y.-Z. Yan, Q.-D. An, Z.-Y. Xiao, S.-R. Zhai, B. Zhai and Z. Shi, *Journal of Materials Chemistry A*, 2017, 5, 17073-17087.