Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Aqueous (co)polymer stabilisers for size-controlled 2-5 nm gold nanoparticle synthesis with tuneable catalytic activity

Daniel J. Traynor,^a Elena Ureña-Horno,^a James J. Hobson,^{ab} Elliot J. Croft,^a Stephanie E. Edwards^a, Steve P. Rannard^{ab} and Marco Giardiello.^{a*}

^aDepartment of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK

^bCentre of Excellence for Long-acting Therapeutics, University of Liverpool, West Derby Street, Liverpool, L7 8TX

E-mail: marco.giardiello@liverpool.ac.uk

Supplementary Information

Figures S1 to S11	¹ H- NMR spectra for all homo-polymers and (co) polymers	Pages 2 to 7
Figure S12	Salt stability studies for AuNP dispersions prepared with linear polymeric stabilisors	8
Figure S13	Salt stability studies for AuNP dispersions prepared with branched polymeric stabilisors	9
Figures S14 to S23	UV-vis data and kinetic plots for catalytic reduction of 4-NP to 4-AP employing AuNPs prepared with all homo-polymers and (co)polymers	10 to 19
Table S1	All calculated apparent rate constants (k_{app}) and induction times (t_i) for the catalytic reduction studies of 4-NP to 4-AP	20

Figure S1. ¹H NMR spectrum of linear homo-polymer DDT-p(OEGMA₅₀)

Figure S2. ¹H NMR spectrum of linear (co)polymer DDT-p(OEGMA_{47.5}-co-MAA_{2.5})

Figure S3. ¹H NMR spectrum of linear (co)polymer DDT-*p*(OEGMA₄₅-*co*-MAA₅)

Figure S4. ¹H NMR spectrum of linear (co)polymer DDT-p(OEGMA_{42.5}-co-MAA_{7.5})

Figure S5. ¹H NMR spectrum of linear (co)polymer DDT-*p*(OEGMA₄₀-*co*-MAA₁₀)

Figure S6. ¹H NMR spectrum of branched (co)polymer DDT-p(OEGMA₅₀-coEGDMA_{0.8})

Figure S7. ¹H NMR spectrum of branched (co)polymer DDT-*p*(OEGMA_{47.5}-*co*-MAA_{2.5}-*co*-EGDMA_{0.9})

Figure S8. ¹H NMR spectrum of branched (co)polymer DDT-p(OEGMA₄₅-co-MAA₅-co-EGDMA_{0.9})

Figure S9. ¹H NMR spectrum of branched (co)polymer DDT-p(OEGMA_{42.5}-co-MAA_{7.5}-co-EGDMA_{0.9})

Figure S10. ¹H NMR spectrum of branched (co)polymer DDT-*p*(OEGMA₄₀-*co*-MAA₁₀-*co*-EGDMA_{0.9})

Figure S11. ¹H NMR spectrum of linear homo-polymer DBIB-p(OEGMA₅₀)

Figure S12. Salt stability studies for AuNP dispersions prepared with linear polymeric stabilisors at (a) 9:1, (b) 18:1 and (c) 35:1 P:Au mass ratios. Plots represent NaCl titrations for AuNP solutions baring polymeric structures with varying MAA:OEGMA ratio; DDT-p(OEGMA₅₀) (dark blue); DDT-p(OEGMA_{47.5}-co-MAA_{2.5}) (orange); DDT-p(OEGMA₄₅-co-MAA₅) (grey); DDT-p(OEGMA_{42.5}-co-MAA_{7.5}) (yellow); DDT-p(OEGMA₄₀-co-MAA₁₀) (light blue). Green corresponds to the UV-vis trace of the control AuNP sample baring no polymeric stabiliser. (d) shows a photograph of solutions following addition of 0.55 M NaCl to AuNPs baring (i) no polymeric stabiliser; (ii) DDT-p(OEGMA₄₅-co-MAA_{7.5}); (iv) DDT-p(OEGMA₄₅-co-MAA₅₉); (v) DDT-p(OEGMA_{42.5}-co-MAA_{7.5}); (vi) DDT-p(OEGMA₄₅-co-MAA₅₉); (v) DDT-p(OEGMA_{42.5}-co-MAA_{7.5}).

Figure S13. Salt stability studies for AuNP dispersions prepared with branched polymeric stabilisors at (a) 9:1, (b) 18:1 and (c) 35:1 P:Au mass ratios. Plots represent NaCl titrations for AuNP solutions baring polymeric structures with varying MAA:OEGMA ratio; DDT-*p*(OEGMA₅₀-*co*-EGDMA_{0.9}) (dark blue); DDT-*p*(OEGMA_{47.5}-*co*-MAA_{2.5}-*co*-EGDMA_{0.9}) (orange); DDT-*p*(OEGMA₄₅-*co*-MAA₅-*co*-EGDMA_{0.9}) (grey); DDT-*p*(OEGMA_{42.5}-*co*-EGDMA_{0.9}) (vellow); DDT-*p*(OEGMA₄₀-*co*-MAA₁₀-*co*-EGDMA_{0.9}) (light blue). Green corresponds to the UV-vis trace of the control AuNP sample baring no polymeric stabiliser. (d) shows a photograph of solutions following addition of 0.55 M NaCl to AuNPs baring (i) no polymeric stabiliser; (ii) DDT-*p*(OEGMA₅₀-*co*-EGDMA_{0.9}); (iii) DDT-*p*(OEGMA_{42.5}-*co*-MAA_{2.5}-*co*-EGDMA_{0.9}); (iv) DDT-*p*(OEGMA_{42.5}-*co*-MAA₅-*co*-EGDMA_{0.9}); (v) DDT-*p*(OEGMA_{42.5}-*co*-MAA₅-*co*-EGDMA_{0.9}); (v) DDT-*p*(OEGMA_{42.5}-*co*-MAA₅-*co*-EGDMA_{0.9}); (v) DDT-*p*(OEGMA_{42.5}-*co*-MAA₅-*co*-EGDMA_{0.9}); (vi) DDT-*p*(OEGMA₄₀-*co*-MAA₁₀-*co*-EGDMA_{0.9}); (vi) DDT-*p*(OEGMA₄₀-*co*-MAA₁₀-*co*-EGDMA_{0.9}); (vi) DDT-*p*(OEGMA₄₀-*co*-MAA₁₀-*co*-EGDMA_{0.9}); (vi) DDT-*p*(OEGMA₄₀-*co*-EGDMA_{0.9}).

Figure S14. DDT-p(OEGMA₅₀) catalytic reduction of 4-NP to 4-AP. A - C show UV-vis absorption traces for (A) 9:1, (B) 18:1 and (C) 35:1 P:Au mass ratios. D – F show -ln(A_t/A_o) vs. t plots used to determine apparent rate constant (k_{app}) and induction times (t_i) for (D) 9:1, (E) 18:1 and (F) 35:1 P:Au mass ratios.

Figure S15. DDT-p(OEGMA_{47.5}-co-MAA_{2.5}) catalytic reduction of 4-NP to 4-AP. A - C show UV-vis absorption traces for (A) 9:1, (B) 18:1 and (C) 35:1 P:Au mass ratios. D – F show -ln(A_t/A_o) vs. t plots used to determine apparent rate constant (k_{app}) and induction times (t_i) for (D) 9:1, (E) 18:1 and (F) 35:1 P:Au mass ratios.

Figure S16. DDT- $p(OEGMA_{45}-co-MAA_5)$ catalytic reduction of 4-NP to 4-AP. A - C show UV-vis absorption traces for (A) 9:1, (B) 18:1 and (C) 35:1 P:Au mass ratios. D – F show $-\ln(A_t/A_o)$ vs. t plots used to determine apparent rate constant (k_{app}) and induction times (t_i) for (D) 9:1, (E) 18:1 and (F) 35:1 P:Au mass ratios.

Figure S17. DDT- $p(OEGMA_{42.5}$ -co-MAA_{7.5}) catalytic reduction of 4-NP to 4-AP. A - C show UV-vis absorption traces for (A) 9:1, (B) 18:1 and (C) 35:1 P:Au mass ratios. D – F show -ln(A_t/A_o) vs. t plots used to determine apparent rate constant (k_{app}) and induction times (t_i) for (D) 9:1, (E) 18:1 and (F) 35:1 P:Au mass ratios.

Figure S18. DDT- $p(OEGMA_{40}-co-MAA_{10})$ catalytic reduction of 4-NP to 4-AP. A - C show UV-vis absorption traces for (A) 9:1, (B) 18:1 and (C) 35:1 P:Au mass ratios. D – F show $-\ln(A_t/A_o)$ vs. t plots used to determine apparent rate constant (k_{app}) and induction times (t_i) for (D) 9:1, (E) 18:1 and (F) 35:1 P:Au mass ratios.

Figure S19. DDT- $p(OEGMA_{50}-co-EGDMA_{0.9})$ catalytic reduction of 4-NP to 4-AP. A - C show UV-vis absorption traces for (A) 9:1, (B) 18:1 and (C) 35:1 P:Au mass ratios. D – F show $-\ln(A_t/A_o)$ vs. t plots used to determine apparent rate constant (k_{app}) and induction times (t_i) for (D) 9:1, (E) 18:1 and (F) 35:1 P:Au mass ratios.

Figure S20. DDT-p(OEGMA_{47.5}-co-MAA_{2.5}-co-EGDMA_{0.9}) catalytic reduction of 4-NP to 4-AP. A - C show UV-vis absorption traces for (A) 9:1, (B) 18:1 and (C) 35:1 P:Au mass ratios. D – F show $-\ln(A_t/A_o)$ vs. t plots used to determine apparent rate constant (k_{app}) and induction times (t_i) for (D) 9:1, (E) 18:1 and (F) 35:1 P:Au mass ratios.

Figure S21. DDT-p(OEGMA₄₅-co-MAA₅-co-EGDMA_{0.9}) catalytic reduction of 4-NP to 4-AP. A - C show UV-vis absorption traces for (A) 9:1, (B) 18:1 and (C) 35:1 P:Au mass ratios. D – F show -ln(A_t/A_o) vs. t plots used to determine apparent rate constant (k_{app}) and induction times (t_i) for (D) 9:1, (E) 18:1 and (F) 35:1 P:Au mass ratios.

Figure S22. DDT-p(OEGMA_{42.5}-co-MAA_{7.5}-co-EGDMA_{0.9}) catalytic reduction of 4-NP to 4-AP. A - C show UV-vis absorption traces for (A) 9:1, (B) 18:1 and (C) 35:1 P:Au mass ratios. D – F show $-\ln(A_t/A_o)$ vs. t plots used to determine apparent rate constant (k_{app}) and induction times (t_i) for (D) 9:1, (E) 18:1 and (F) 35:1 P:Au mass ratios.

Figure S23. DDT- $p(OEGMA_{40}-co-MAA_{10}-co-EGDMA_{0.9})$ catalytic reduction of 4-NP to 4-AP. A - C show UV-vis absorption traces for (A) 9:1, (B) 18:1 and (C) 35:1 P:Au mass ratios. D – F show $-\ln(A_t/A_o)$ vs. t plots used to determine apparent rate constant (k_{app}) and induction times (t_i) for (D) 9:1, (E) 18:1 and (F) 35:1 P:Au mass ratios.

Table S1. Calculated apparent rate constants (k_{app}) and induction times (t_i) for each AuNP solution prepared using the library of employed polymeric stabilisers for the catalytic reduction of 4-NP to 4-AP, determined by UV-vis spectroscopy.

Linear Homo-polymers and (co)polymers				Branched (co)polymers			
Structure	P:Au	k_{app}	ti	Structure	P:Au	<i>k</i> _{app} (s ⁻¹)	t _i (s)
		(s-1)	(s)				
DDT-p(OEGMA ₅₀)	9:1	12.8	30	DDT-p(OEGMA ₅₀ -co-	9:1	24.4	20
	18:1	5.3	210	EGDMA _{0.9})	18:1	19.6	50
	35:1	1.0	2070		35:1	4.1	420
DDT-p(OEGMA47.5-co-	9:1	18.0	30	DDT-p(OEGMA _{47.5} -co-	9:1	27.4	20
MAA _{2.5})	18:1	8.9	90	MAA _{2.5} - <i>co</i> -EGDMA _{0.9})	18:1	21.8	50
	35:1	1.1	570		35:1	4.9	330
DDT-p(OEGMA45-co-	9:1	20.9	10	DDT-p(OEGMA ₄₅ -co-MAA ₅ -	9:1	31.1	20
MAA ₅)	18:1	14.5	30	co-EGDMA _{0.9})	18:1	22.6	40
	35:1	3.9	150		35:1	6.9	210
DDT-p(OEGMA _{42.5} -co-	9:1	29.5	10	DDT-p(OEGMA _{42.5} -co-	9:1	33.3	10
MAA _{7.5})	18:1	23.1	10	MAA _{7.5} -co-EGDMA _{0.9})	18:1	26.8	20
	35:1	5.4	90		35:1	13.9	90
DDT-p(OEGMA ₄₀ -co-	9:1	36.6	0	DDT-p(OEGMA ₄₀ -co-MAA ₁₀ -	9:1	45.3	10
MAA ₁₀)	18:1	25.1	10	<i>co</i> -EGDMA _{0.9})	18:1	38.8	10
	35:1	7.3	60		35:1	15.5	90