Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

Integration of polypyridyl-based ionic liquids into MIL-101 for

promoting CO₂ conversion into cyclic carbonates under cocatalyst-

free and solventless conditions

Fangfang Li, Yan Chen, Aijia Gao, Wenjing Tong, Changchun Ji, Yong Cheng and Ying-Hua Zhou*

The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China

E-mail: yhzhou@ahnu.edu.cn

Fig. S1 PXRD patterns of MIL-101-IL(RBr).

Fig. S2 NLDFT pore size distributions of MIL-101-PTP and MIL-101-IL(BuBr).

Fig. S3 SEM image and the elemental mapping of MIL-101-IL(BuBr).

Fig. S4 Isosteric heat of CO₂ adsorption for of MIL-101-IL(BuBr) by Clausius–Clapeyron equation.

Fig. S5 FTIR spectra of MIL-101, MIL-101- PTP and MIL-101-IL(BuBr).

Fig. S6 TG curve of MIL-101-IL(BuBr).

Fig. S7 (a) ¹H-NMR (a) spectra (CDCl₃) for ECH cycloaddition with CO₂ using MIL-101-IL(BuBr) catalyst. Black line: the substrate; Red line: the reaction solution after centrifugation (conditions: 100 mg catalyst, 1.0 MPa CO₂ and 110 °C for 6 h); Blue line: the isolated product; (b) mass spectra of the principal product; (c) mass spectra of the by-product.

Fig. S8 ¹H-NMR spectra (CDCl₃) for CO₂ cycloaddition with epibromohydrin using MIL-101-IL(BuBr) catalyst. Black line: the substrate; Red line: the reaction solution after centrifugation (conditions: 100 mg catalyst, 1.0 MPa CO₂ and 110 °C for 6 h); Blue line: the isolated product.

Fig. S9 ¹H-NMR spectra (CDCl₃) for CO₂ cycloaddition with propylene oxide using MIL-101-IL(BuBr) catalyst. Black line: the substrate; Red line: the reaction solution after centrifugation (conditions: 100 mg catalyst, 1.0 MPa CO₂ and 110 °C for 6 h); Blue line: the isolated product.

Fig. S10 ¹H-NMR spectra (CDCl₃) for CO₂ cycloaddition with 1,2-epoxybutane using MIL-101-IL(BuBr) catalyst. Black line: the substrate; Red line: the reaction solution after centrifugation (conditions: 100 mg catalyst, 1.0 MPa CO₂ and 110 °C for 6 h); Blue line: the isolated product.

Fig. S11 ¹H-NMR spectra (CDCl₃) for CO_2 cycloaddition with epoxypropyl phenyl ether using MIL-101-IL(BuBr) catalyst. Black line: the substrate; Red line: the reaction solution after

centrifugation (conditions: 100 mg catalyst, 1.0 MPa CO_2 and 110 °C for 6 h); Blue line: the isolated product.

Fig. S12 FTIR spectra for the fresh (black line) and reused (red line) MIL-101-IL(BuBr).

Fig. S13 N_2 adsorption and desorption isotherms at 77 K of the reused MIL-101-IL(BuBr). Inset: the NLDFT pore size distribution.

Element	C wt%	N wt%	H wt%
Theoretical MIL-101(Cr)	24.64	0	5.69
MIL-101-PTP	47.18	5.61	3.15
MIL-101-IL(BuBr)	32.38	0.81	2.81

 Table S1. Elemental analysis of the MIL-101 derivatives.