Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information file

Synthesis, Characterization and Multi Dimensional Application Approach of Two Distinctive Tetra Nuclear First Time Reported Fe³⁺/Hg²⁺ and Fe³⁺/Cd²⁺ clusters from a New Fe³⁺ Containing Metalloligand

SoumikLaha,^a Dibyendu Sathapathi,^b Mainak Das, ^c Manik Das,^b, Partha Pratim Ray, ^c Arijit Bag^d, Bidhan Chandra Samanta,^e Uttam Kumar Das^{f*}, Tithi Maity^{b*}

^a IICB, Kolkata, West Bengal, India

^b Department of Chemistry, Prabhat Kumar College, Contai, Contai, Purba Medinipur, West Bengal, India

^c Department of Physics, Jadavpur University, Kolkata, India

^dSchool of Natural and Applied Sciences, Maulana Abul Kalam Azad University of Technology,

West Bengal, India

^e Mugberia Gangadhar Mahavidyalaya, Purbamedinipur, West Bengal India

^f Department of Chemistry, School of Physical Science, Mahatma Gandhi Central University,

Bihar, India.

Email: titlipkc2008@gmail.com, uttamkumardas@mgcub.ac.in

Contents

Figure	Figure caption	Page number		
Fig. S1	FTIR spectrum of MC1	S 3		
Fig. S2	FTIR spectrum of MC2	<u> </u>		
Fig. S3	FTIR spectrum of MC3	<u> </u>		
Fig. S4	UV spectrum of a) MC1 b) MC2 c)MC3	S 5		
Fig. S5	Mass spectra of MC1	S5		
Fig. S6	Mass spectra of a) MC2 b) MC4	S6		
Fig. S7	Mass spectra of MC3	S7		
Fig. S8	a) The overall packing of the crystal structure b) Molecular	S7		
	plot of MC1			
Fig. S9	a) The overall packing of the crystal structure b) Molecular	S8		
	plot of MC2			
Fig. S10	Molecular Plot of MC3	S8		
Table S1	Hydrogen bonding parameter of MC1	S 9		
Fig. S11	Binding constant determination of a) MC1-Hg(II) adduct b)	S9		
	MC1-Cd(II) adduct			
S12	Band gap calculation of MC4	S 9		
Fig. S13	a) dV/dlnI vs. I and H(I) vs. I curves for device-C b) Current-	S10		
	voltage characteristics plot for device A, B, C under dark			
	condition and Log I vs V plot for device A, B and C.			
Fig. S14	Rate of methylene blue degradation in presence of a) only	S10		
	complex b) complex in presence of H_2O_2 .			
Table S2	able S2 Alteration of the absorbance of methylene blue dye with time			
	in presence of a) MC2 b) MC3 in presence of H_2O_2 upon			
	irradiation of photons			
Fig. S15	Plot of $\ln(C_0/C)$ vs time for the pseudo first order kinetics	S11		
	curves of the photocatalytic degradation of methylene blue by	~ • •		
	using MC3 catalyst in presence of stoichiometric inhibitor			
	EDTA			
	LDIA			

Fig. S2: FTIR spectrum of MC2

Fig. S3: FTIR spectrum of MC3

Fig. S4: UV spectrum a) MC1 b) MC2 c) MC3

Fig. S5 Mass spectra of MC1

Fig. S6 Mass spectra of a) MC2 b) MC4

Fig. S7 Mass spectra of MC3

Fig. S8: a) The overall packing of the crystal structure b) Molecular plot of MC1

Fig. S9: a) The overall packing of the crystal structure b) Molecular plot of MC2

Fig. S10: Molecular plot of MC3

D–H•••A	D–H	H∙∙∙A	D•••A	D–H•••A	Symmetry
	(Å)	(Å)	(Å)	(°)	operation for A
O(27)–H(27A)●●O23	0.804	2.199	2.965	159.47	-x+1, -y+1, -z+1
O(27)–H(27B)●●●O10	0.674	2.252	2.835	145.73	-x+1, -y+1, -z+1

Table S1: Hydrogen bonding parameter of MC1

Fig. S11: Binding constant determination of a) MC1-Hg(II) adduct c) MC1-Cd(II) adduct

Fig. S12: Band gap calculation of MC4

S9

Fig. S13 a) dV/dlnI vs. I and H(I) vs. I curves for device-C b) Current-voltage characteristics plot for device A, B, C under dark condition and Log I vs V plot for device A, B and C.

Fig. S14: Rate of methylene blue degradation in presence of a) only complex b) complex in presence of H_2O_2 .

Table S2: Photocatalytic Methylene blue dye degradation rate constant by changing the different parameter

Sample	Rate constant in	pН	Rate	Stoichiometry	Rate
composition	mim ⁻¹ of MB dye	values	constant in	change of MC3	constant
	degradation		mim ⁻¹ of MB	catalyst	in mim ⁻¹
	_		dye		
			degradation		
			by MC3		
			catalysis		
Only in presence	0.0015	3	0.0034	10 mg of MC3	0.015
of H ₂ O ₂					
$H_2O_2 + MC2$	0.0156(10 times)	7	.009	20 mg of MC3	0.256
$H_2O_2 + MC3$	0.0259(17 times)	9	.010		
		11	.013	30 mg of MC3	0.272

Fig. S15: Plot of $\ln(C_0/C)$ vs time for the pseudo first order kinetics curves of the photocatalytic degradation of methylene blue by using **MC3** catalyst in presence of stoichiometric inhibitor EDTA