Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

Photocatalytic Degradation-based Efficient Elimination of Pesticides using Ruthenium/Gold Metal Nanoparticle-anchored Zirconium Dioxide

Anuj Chauhan,^a Namasivayam Dhenadhayalan,^{a,*} Jen-Chen Yeh,^a and King-Chuen Lin^{a,b,*}

^a Department of Chemistry, National Taiwan University, Taipei-10617, Taiwan.

^b Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei-10617, Taiwan.

*Correspondence should be addressed.

E-mail: ndhena@gmail.com (Namasivayam Dhenadhayalan); Tel.: +886-2-33668289.

E-mail: kclin@ntu.edu.tw (King-Chuen Lin); Fax: +886-2-23621483; Tel.: +886-2-33661162.

Fig. S1. EDX spectra of (a) $ZrO_2@Au$ and (b) $ZrO_2@Ru$.

Fig. S2. (a) UV-visible diffuse absorption spectra of the nanohybrids. Tauc plots of (b) ZrO₂,
(c) ZrO₂@Ru, and (d) ZrO₂@Au.

Fig. S3. Conduction band and valence band positions of ZrO₂, ZrO₂@Au, and ZrO₂@Ru.

To simplify the mechanism of the photocatalytic behaviour of the composite, it is required to find out the position of the conduction band (CB) and valence band (VB) potentials. These positions were calculated using the following equations:^{\$1,\$2}

$$E_{CB} = \chi - E_e - \frac{1}{2}E_g \tag{1}$$

$$E_{VB} = E_{CB} + E_g \tag{2}$$

$$\chi = \left[\chi(A)^a \chi(B)^b \chi(C)^c \chi(D)^d\right]^{\frac{1}{a+b+c+d}}$$
(3)

Where E_{CB} is the CB position, E_{VB} is the VB position, χ is the electronegativity of the semiconductor, (a, b, c, d) are the number of elements present in the composite, E_e (4.5 eV) is the energy of free electrons vs. hydrogen, and E_g is the bandgap of the nanomaterial.

Fig. S4. (a) Photocurrent response of ZrO_2 , $ZrO_2@Au$, and $ZrO_2@Ru$. (b) Photocurrent stability test of $ZrO_2@Ru$.

Fig. S5. Photoluminescence emission spectra of ZrO₂, ZrO₂@Au, and ZrO₂@Ru.

Fig. S6. Time-dependent absorption spectra of DI with the presence of 0.02 mg/mL (a) $ZrO_2@Ru$ and (d) $ZrO_2@Au$.

Fig. S7. Time-dependent absorption spectra for the photodegradation of DI without photocatalyst.

Pesticides	Photocatalyst	Time	Rate constant	Ref.
		(min)	(min ⁻¹)	
DI	P-25 TiO ₂	120	0.1111	54
	$Bi_2W_2O_9$	180	~0.0045	55
	CuS/Bi2W2O9	180	~0.0150	55
	Ag/ZnO	90	0.0370	56
	ZrO ₂ @Ru	13	0.2506	This work
	ZrO ₂ @Au	18	0.1766	This work
MP	N-doped TiO ₂	60	-	57
	Ag-TiO ₂	420	0.0069	58
	La/TiO ₂	120	-	59
	$Fe_3O_4@SiO_2@TiO_2$	30	0.0659	60
	Pd@ZnONSt	110	0.0635	61
	Ag-TiO ₂ (4% Ag)	60	0.0344	62
	ZnO/CuO	60	0.0331	63
	Cu(II)/MCM-41	240	0.0053	64
	Ni(II)/MCM-41	240	0.0061	64
	ZrO ₂ @Ru	35	0.0762	This work
	ZrO ₂ @Au	60	0.0456	This work

Table S1. The reported data for the photocatalytic degradation of DI and MP.

Fig. S8. Time-dependent absorption spectra for the photodegradation of MP without photocatalyst.

Fig. S9. Time-dependent absorption spectra of MP with presence of (a) $ZrO_2@Ru$ and (d) $ZrO_2@Au$ (0.02 mg/mL).

Fig. S10. Time-dependent absorption spectra of (a) DI and (d) MP in the presence of bare ZrO_2 (0.2 mg/mL). Plot of degradation efficiency versus time for (b) DI and (e) MP. Plot of $ln(C_t/C_0)$ versus time for (c) DI and (f) MP.

Fig. S11. ESI-MS spectra for photocatalytic degradation of DI with the presence of $ZrO_2@Ru$ (0.02 mg/mL). (a) without irradiation (b) 5 min, (c) 15min, and (d) 35 min (end of the reaction).

Fig. S12. Conversion efficiency of $ZrO_2@Ru$ towards the degradation of DI.

Fig. S13. (a) FETEM image and (b) XRD pattern of recycled ZrO₂@Ru.

Fig. S14. Deconvoluted XPS spectra of recycled ZrO₂@Ru. [(a) Zr 3d, (b) O 1s, (c) Ru 3d].

References

- S1. I. Ahmad, M. S. Akhtar, E. Ahmad and M. Ahmad, J. Mater. Sci.: Mater. Electron., 2020, 31, 1084–1093.
- S2. Y. Q. Liang, Z. D. Cui, S. L. Zhu, Z. Y. Li, X. J. Yang, Y. J. Chen and J. M. Ma, *Nanoscale*, 2013, 5, 10916-26.