Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

A novel metal-free ternary core-shell carbon sphere/C₃N₄/PPy

nanocomposite for high-performance supercapacitor

Xiaobo Wu,^a Huiqing Fan,^{*a} Weijia Wang,^a Lin Lei,^a and Longtao Ma^{*b}

 ^a State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 (P. R. China)
^b Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 (P. R. China)

Corresponding authors: Prof. Huiqing Fan, hqfan@nwpu.edu.cn

Electrochemical measurements

The electrochemical measurements were tested by using an electrochemical workstation (CHI660E, CH Instruments, Shanghai, China) in 6.0 M KOH aqueous solution at room temperature.

The working electrode was prepared by mixing the electroactive material, carbon black (super-P-Li) and polymer binder (polyvinylidene difluoride, PTFE) in a weight ratio of 80:10:10. The slurry was pressed onto Ni foam and dried at 120°C for 10 h. The loading mass of electrode material is about 1-3 mg, and the loading amount was confirmed by elaborately weighing the changed weight of Ni foam. The electrochemical measurements were performed by using three electrodes assemble. In the three-electrode cell, the active material elec trodes were used as the working electrode, with Pt plate and silver/silver chloride (Ag/AgCl) as the counter and the reference electrode, respectively.

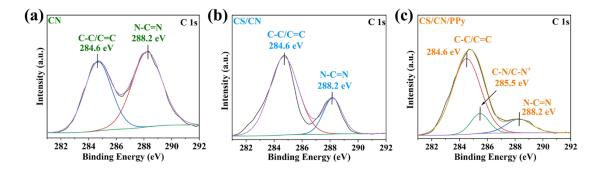


Fig. S1 C 1s XPS spectra of (a) CN, (b) CS/CN and (c) CS/CN/PPy.

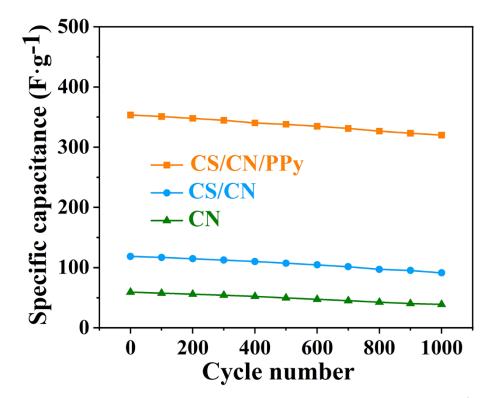


Fig. S2 The specific capacitance vs cycle number at current density of $1 \text{ A} \cdot \text{g}^{-1}$ of CN, CS/CN and CS/CN/PPy.

Table S1 The capacitance comparison of different $g-C_3N_4$ or PPy-based electrodes composite materials.

Samples	Current density (A·g ⁻¹)	C _{sp} (F·g ⁻¹)	Ref
$MnO_2/g-C_3N_4@PPy$	2	274	1
PCN@PPy-C-900	5	350	2
g-C ₃ N ₄ @G	1	264	3
Exfoliated bare C ₃ N ₄	1	113.7	4
g-C ₃ N ₄ /PPy	1	471	5
GO/PPy	1	303	6
CNTs/PPy	1	282	7

References

- 1 S. Sun, L. Guo, X. Chang, Y. Yu and X. Zhai, Mater. Lett., 2019, 236, 558-561.
- 2 Q. Li, D. Xu, J. Guo, X. Ou and F. Yan, Carbon, 2017, 124, 599-610.
- 3 Q. Chen, Y. Zhao, X. Huang, N. Chen and L. Qu, J. Mater. Chem. A, 2015, 3, 67616766.
- 4 R. Gonçalves, T. M. Lima, M. W. Paixão and E. C. Pereira, *RSC Adv.*, 2018, **8**, 35327-35336.
- 5 G. Dong, H. Fan, K. Fu, L. Ma, S. Zhang, M. Zhang, J. Ma and W. Wang, *Compos.s Part B-Eng.*, 2019, **162**, 369-377.
- 6 L.-Q. Fan, G.-J. Liu, J.-H. Wu, L. Liu, J.-M. Lin and Y.-L. Wei, *Electrochim. Acta*, 2014, 137, 26-33.
- 7 A. H. P. de Oliveira and H. P. de Oliveira, J. Power Sources, 2014, 268, 45-49.