Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Highly reversible Li-ion full batteries using Mg-doped Li-rich Li_{1.2}Ni_{0.28}Mn_{0.468}Mg_{0.052}O₂ cathode and carbon-decorated Mn₃O₄ anode with hierarchical microsphere structures

By Jong Guk Kim,^{a†} Yuseong Noh,^{b††} and Youngmin Kim*^c

^aResearch Center for Materials Analysis, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea

^bDepartment of Chemical Engineering, Pohang University of Science and Technology

(POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea

^cChemical & Process Technology Division, Korea Research Institute of Chemical Technology

(KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea

†Present Addresses: Dongwon Systems, 68, Mabang-ro, Seocho-gu, Seoul, Republic of Korea
††Present Addresses: Samsung Electronics, Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do
18448, Republic of Korea

* Corresponding Author: Tel: +82-42-610-8576, E-mail: ykim@krict.re.kr

Fig. S1 (a and b) Typical SEM images of the (a) MnO₂ and (b) LLNMO MSs.

Samples	Lattice parameters			I(003)/I(104)
	a (Å)	c (Å)	$V(\text{\AA}^3)$	
LLNMO@Mg MSs	2.8580	14.2560	100.8446	1.39
LLNMO MSs	2.8560	14.2460	100.6329	1.25

 Table S1 Crystallographic data of the LLNMO@Mg and LLNMO MSs.

Fig. S2 (a) TEM and (b) HRTEM image of the LLNMO MSs. (c) Dark-field TEM image of LLNMO MSs and corresponding elemental mapping images of Ni, Mn, and O.

Fig. S3 (a) EDX spectrum of the LLNMO@Mg MSs. (b-f) XPS spectra of (b) full scan, (c) Ni 2p, (d) Mn 2p, (e) O 1s, (f) Mg 1s regions of the LLNMO@Mg MSs.

Fig. S4 (a) CVs of the LLNMO@Mg MSs between 4.8 and 2.0 V at a scan rate of 0.05 mV s⁻¹. (b) Nyquist plots of the LLNMO@Mg and LLNMO MSs measured at an open-circuit voltage of 2.0 V after the first cycle. Inset shows the equivalent circuit fitted with uncompensated resistance (R_u), charge transfer resistance (R_{ct}), double layer capacitance (CPEdI), and Warburg impedance (Wd). (c) GITT curves of the LLNMO@Mg and LLNMO electrodes by 30 min charging/discharging and 1 h relaxation after the 100th cycle. (d) Polarization curves in the transient potential regions of the LLNMO@Mg and LLNMO MSs electrodes.

Fig. S4a shows the CV curves for the LLNMO@Mg MSs measured at a scan rate of 0.05 mV s⁻¹ between 4.8 and 2.0 V, whose CV profiles are analogous to previously reported Li-rich cathode materials.^[S1,S2] In the anodic sweep, two anodic peaks at 3.8 and 4.6 V were observed. The well-defined anodic peak at 3.8 V can be assigned to the Ni²⁺ oxidation to Ni⁴⁺, while the peak at 4.3 V could be ascribed to the oxidation of Mn³⁺ to Mn⁴⁺. The other sharp anodic peak at 4.6 V could be related to the Li₂MnO₃ activation. In the following cathodic sweep, the reduction peak at 3.7 V could be attributed to the Ni⁴⁺ reduction, while the peak at 3.2 V could be assigned to the Mn⁴⁺ reduction to Mn³⁺.^[S1,S2] Hence, the reversible redox reaction of the LLNMO@Mg MSs involved both Ni and Mn elements. The changes in the cycling profiles from the second cycle onward were quite smooth, indicating good cycling reversibility of the LLNMO@Mg MSs.

In order to understand the reasons for the enhanced performances of the LLNMO@Mg MSs, potential polarization curves were obtained from the GITT measurements after the 100th cycle, as shown in Fig. S4c. The polarization curves were plotted by the difference between the closedcircuit and quasi-open-circuit potential in the transient potential profiles.^[S3] The LLNMO@Mg MSs electrode shows a smaller polarization in Fig. S4d, which means that the LLNMO@Mg MSs could have enhanced charge transfer rates, compared with bare LLNMO MSs.^[S4] Therefore, the Li⁺ diffusivity of the LLNMO@Mg MSs could be definitely higher than that of the bare LLNMO MSs electrodes.

Fig. S5 CVs of the LLNMO MSs electrode from 4.8 to 2.0 V at a scan speed of 0.05 mV s⁻¹.

As shown in Fig. S5, the bare LLNMO MSs electrode showed large potential polarization compared with the LLNMO@Mg MSs, indicating that the LLNMO@Mg MSs could have improved kinetic properties.

Fig. S6 (a) Potential profiles of the bare LLNMO MSs. (b) Discharge median potential profiles of the LLNMO@Mg and LLNMO MSs electrodes. Coulombic efficiency-cycle number curves of (c) LLNMO@Mg and (d) Mn₃O₄@C electrodes.

Fig. S7 (a-c) SEM images of (a) LLNMO@Mg, (b) Mn₃O₄@C, and (c) Mn₃O₄ MSs electrodes in the half-cell after cyclings.

Fig. S8 (a-d) XPS spectra of (a) full scan, (b) Mn 2p, (c) O 1s, (d) C 1s regions of the Mn₃O₄@C MSs.

XPS analysis was performed to examine the oxidation state of Mn, O, and C elements in the Mn₃O₄@C MSs. The XPS survey spectra of the Mn₃O₄@C MSs are depicted in Fig. S8a. In Fig. S8b, the peaks at 653.1 and 641.3 eV can be attributed to Mn 2p_{1/2} and Mn 2p_{3/2}, respectively. The binding energy difference is 11.8 eV, which is in line with previous reports.^[S5,S6] As shown in Fig. S8c, the O 1s photoelectron peak is deconvoluted into three peaks: the main peak at 529.6

eV is ascribed to the oxygen species in the Mn₃O₄ MSs, while minor peaks at 531.0 and 532.3 eV correspond to the OH⁻ species or chemisorbed oxygen.^[S5] As shown in Fig. S8d, the C 1s spectrum peaks can be resolved into three peaks: one peak at 284.5 eV is attributed to C–C, whereas the other peaks at 285.4 and 288.2 eV can be assigned to C–O, and C=O, respectively.^[S6] Consequently, the XPS spectra further demonstrate that the Mn₃O₄@C MSs are composed of the Mn₃O₄ and carbon layers.

Fig. S9 (a) TGA curves of the Mn₃O₄@C and Mn₃O₄ MSs. (b) EDX spectrum of the Mn₃O₄@C MSs.

Fig. S10 (a) CV profiles of Mn₃O₄@C MSs at a scan rate of 0.05 mV s⁻¹. (b) Nyquist plots of the Mn₃O₄@C and Mn₃O₄ MSs measured at an open-circuit voltage of 3.0 V after the first cycle.

Fig. S10a presents the CV profiles for the Mn₃O₄@C MSs electrode obtained from 3.0 to 0.01 V at a scan rate of 0.05 mV s⁻¹, whose curves are analogous to previously reported Mn₃O₄-based materials.^[S7,S8] In the first cycle, there are weak reduction peaks at 1.8 and 1.5 V, which are assigned to the compound formation of Li in Mn₃O₄ and reduction of Mn₃O₄ to MnO, respectively.^[S7] The intense peak at 0.1 V is related to the MnO reduction to Mn⁰. The broad peak at 0.8 V is attributed to the SEI layer formation. In the first oxidation process, the peaks at 1.3 and 2.1 V are observed, which are in accordance with the oxidation of metallic Mn⁰ to MnO and oxidation of MnO to Mn₃O₄, respectively.^[S7,S8] The CV profiles in the subsequent two cycles almost overlap, implying enhanced cyclability of the Mn₃O₄@C MSs electrode.

To further understand the enhanced electrode kinetics of the Mn₃O₄@C MSs as compared with the Mn₃O₄ MSs, the resistance was investigated with EIS measurements. A semicircle at a high-to-medium frequency and a sloping line at a low frequency were observed in the Nyquist plots, as shown in Fig. S10b. From the Nyquist plots, the charge transfer resistance (R_{ct}) of the Mn₃O₄@C MSs electrode (72.1 Ω) is much smaller than that of the Mn₃O₄ electrode (107.1 Ω), indicating the improved electrical conductivity and Li⁺ transfer rate by the carbon coating to the Mn₃O₄ MSs.^[S3] Therefore, the Mn₃O₄@C MSs showed enhanced electrochemical properties compared to the bare Mn₃O₄ MSs electrode.

References

- (S1) L. Li, L. Wang, X. Zhang, Q. Xue, L. Wei, F. Wu and R. Chen, ACS Appl. Mater. Interfaces, 2017, 9, 1516-1523.
- (S2) D. Chen, Q. Yu, X. Xiang, M. Chen, Z. Chen, S. Song, L. Xiong, Y. Liao, L. Xing and W. Li, *Electrochim. Acta*, 2015, **154**, 83-93.
- (S3) J. G. Kim, Y. Noh and Y. Kim, J. Ind. Eng. Chem., 2022, 107, 280-290.
- (S4) Y. J. Nam, D. Y. Oh, S. H. Jung and Y. S. Jung, J. Power Sources, 2018, 375, 93-101.
- (S5) W. Mao, W. Yue, Z. Xu, J. Wang, J. Zhang, D. Li, B. Zhang, S. Yang, K. Dai, G. Liu and G.
 Ai, ACS Appl. Mater. Interfaces, 2020, 12, 39282-39292.
- (S6) S.-C. Weng, S. Brahma, P.-C. Huang, Y.-C. Huang, Y.-H. Lee, C.-C. Chang and J.-L. Huang, *Appl. Surf. Sci.*, 2020, **505**, 144629.
- (S7) Y. Qin, Z. Jiang, L. Guo, J. Huang and Z.-J. Jiang, Chem. Eng. J., 2021, 406, 126894.
- (S8) D. Zhang, G. Li, J. Fan, B. Li and L. Li, Chem. Eur. J., 2018, 24, 9632-9638.