Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Information (New Journal of Chemistry)

Remarkable Difference in Pre-Cation Exchange Reactions of Inorganic Nanoparticles

in Cases with Eventual Complete Exchange

Madhumita Bhar,¹ Saoni Rudra,¹ Nayan Bhunia,¹ Suchandra Mukherjee,² Aritra Banerjee^{1,2}

and Prasun Mukherjee^{1,*}

¹ Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2,

Sector-III, Salt Lake, Kolkata-700106, West Bengal, India

² Department of Physics, University of Calcutta, 92, Acharya Prafulla Chandra Road,

Kolkata-700009, West Bengal, India

E-mail: pmcrnn@caluniv.ac.in, pmukherjee12@gmail.com

		$[Zn(Tb)S] : [Hg^{2+}] = 1:10^{M} [M = -12 \text{ to } -2]$										
		M										
	Zn(Tb)S	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2
Zn	35.5 ± 0.9	33.9	35.0	35.0	34.7	31.2	35.2	38.5	44.0 ±	33.1 ±	42.8 ±	27.9 ±
	(35.9 ±	± 2.9	± 2.5	± 3.7	± 2.5	± 1.7	± 2.1	± 2.4	0.2	3.9	0.7	3.0
	0.4)											
Tb	3.1 ± 0.2	3.3 ±	3.2 ±	3.4 ±	3.1 ±	5.0 ±	4.5 ±	4.6 ±	5.8 ±	4.6 ±	5.9 ±	5.4 ±
	(6.3 ± 0.2)	0.2	0.3	0.1	0.4	0.4	0.6	0.2	1.1	0.9	0.3	0.5
S	61.4 ± 0.8	61.7	60.5	60.5	60.8	62.1	58.8	54.2	46.3 ±	58.3 ±	47.8 ±	61.9 ±
	(57.8 ±	± 3.0	± 2.5	± 3.5	± 2.0	± 1.9	± 2.2	± 2.6	2.1	2.8	0.9	3.2
	0.4)											
Hg		1.2 ±	1.3 ±	1.2 ±	1.4 ±	1.7 ±	1.5 ±	2.7 ±	4.0 ±	4.0 ±	3.5 ±	4.8 ±
		0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.9	0.3	0.1	0.3
	$[Zn(Tb)S] : [Pb^{2+}] = 1:10^{M b}$											
		Μ										
	Zn(Tb)S	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2
Zn	35.5 ± 0.9	40.7	36.6	39.5	36.6	31.2	30.7	31.1	35.1 ±	29.3 ±	30.0 ±	$30.2 \pm$
	(35.9 ±	± 0.4	± 1.9	± 0.7	± 3.0	± 3.3	± 4.2	± 4.8	3.3	2.2	3.3	0.8
	0.4)								(28.3 ±	(32.3 ±	(19.6 ±	(32.2 ±
									5.3)	3.1)	3.2)	2.1)
Tb	3.1 ± 0.2	2.7 ±	3.6 ±	3.2 ±	3.5 ±	4.3 ±	4.4 ±	4.7 ±	3.6 ±	3.8 ±	4.3 ±	4.8 ±
	(6.3 ± 0.2)	0.3	0.3	0.3	0.3	0.4	0.7	0.9	0.8	0.3	0.4	0.6
									(4.5 ±	(5.4 ±	(4.7 ±	(6.0 ±
									0.4)	0.1)	0.5)	1.0)
S	61.4 ± 0.8	54.9	58.1	55.4	58.0	62.8	63.1	62.2	59.7 ±	65.8 ±	64.5 ±	62.6 ±
	(57.8 ±	± 0.3	± 2.1	± 0.8	± 2.7	± 3.6	± 3.9	± 4.6	2.7	2.4	3.3	0.9
	0.4)								$(66.6 \pm$	$(61.5 \pm$	(74.4 ±	(59.8 ±
									5.6)	3.1)	3.8)	2.3)
Pb		1.7 ±	1.7 ±	1.9 ±	1.8 ±	1.7 ±	1.7 ±	2.0 ±	1.7 ±	1.2 ±	1.2 ±	2.5 ±
		0.2	0.1	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.2
									$(0.5 \pm$	$(0.8 \pm$	$(1.3 \pm$	(2.0 ±
									0.1)	0.5)	0.4)	0.1)

Table S1. The elemental composition of the nanoparticles (NPs) studied in the pre-cation exchange reaction condition.^a

^a The values were obtained from multiple areas of the sample and are reported as average and standard deviations.

^b The values within parentheses are taken from our previous work on Zn(Tb)S/Pb NPs. [RSC Adv. 2018, 8, 18093-18108]

	$[Zn(Tb)S] : [Hg^{2+}] = 1:10^{M} [M = -1 \text{ to } 10]$							
		M						
	Zn(Tb)S	-1	0	1				
Zn	$35.5 \pm 0.9 \ (35.9 \pm 0.4)$	25.2 ± 5.3						
Tb	$3.1 \pm 0.2 \ (6.3 \pm 0.2)$	6.0 ± 0.7	1.3 ± 0.3	2.1 ± 0.4				
S	$61.4 \pm 0.8 (57.8 \pm 0.4) \qquad 55.8 \pm 7.3$		50.6 ± 1.0	41.2 ± 1.3				
Hg		13.0 ± 1.4	48.1 ± 1.3	56.8 ± 1.2				
		$[Zn(Tb)S] : [Pb^{2+}] = 1:10^{M b}$						
		Μ						
	Zn(Tb)S	-1	0	1				
Zn	$35.5 \pm 0.9 (35.9 \pm 0.4)$	27.0 ± 1.5 (34.1 ± 2.4)	()	()				
Tb	$3.1 \pm 0.2 \ (6.3 \pm 0.2)$	$3.9 \pm 0.3 \ (6.8 \pm 1.0)$	$3.0 \pm 0.2 \ (1.3 \pm 0.7)$	$1.4 \pm 0.2 ()$				
S	$61.4 \pm 0.8 \ (57.8 \pm 0.4)$	$62.8 \pm 1.7 \ (48.1 \pm 3.6)$	$65.7 \pm 2.5 \ (44.8 \pm 5.1)$	58.4 ± 1.7 (45.9 ± 1.2)				
Pb		$6.3 \pm 0.8 (11.1 \pm 0.8)$	31.2 ± 2.3 (53.8 ± 4.7)	$40.2 \pm 1.5 (54.2 \pm 1.2)$				

Table S2. The elemental composition of the nanoparticles (NPs) studied in the cation exchange reaction condition.^a

^a The values were obtained from multiple areas of the sample and are reported as average and standard deviations.

^b The values within parentheses are taken from our previous work on Zn(Tb)S/Pb NPs. [RSC Adv. 2018, 8, 18093-18108] These values indicate that the elemental compositions in the Zn(Tb)S/Hg and Zn(Tb)S/Pb NPs following the cation exchange reaction is similar. We interpret the variation in the elemental composition in the [Zn(Tb)S] : $[Hg^{2+}] / [Pb^{2+}] = 1:1$ and 1:10 due to batch to batch variation. For example, a source of such variation can arise from amount of post-synthetically cation addition from solution. Nonetheless, both these data track complete exchange of Zn²⁺ by Hg²⁺ / Pb²⁺.

Table S3. The elemental composition of the NPs from the inductively coupled atomic emission spectroscopy (ICP-AES).^a

$[Zn(Tb)S] : [Pb^{2+}] = 1:10^{M}$	Concentration of elements (ppb)			
М	Zn	Pb		
-8	44442 ± 176	9.8 ± 0.8		
-6	43937 ± 64	21.7 ± 0.9		
-4	43440 ± 177	92.0 ± 1.0		
-2	42312 ± 226	3871 ± 9		

^a The elemental composition values are reported as average and standard deviations from three measurements, and are corrected for background contributions.

Figure S1. A comparison of the electronic absorption spectra of the Zn(Tb)S/Hg and Zn(Tb)S/Pb NPs are shown. The spectrum of the Zn(Tb)S NPs is included in all the panels for better comparison.

Figure S2. Steady-state photoluminescence spectra of the Zn(Tb)S NPs and the postsynthetically modified NPs with varying ratios of [Zn(Tb)S]: $[Hg^{2+}]$ are shown.

Figure S3. Steady-state photoluminescence spectra of the Zn(Tb)S NPs and the postsynthetically modified NPs with varying ratios of [Zn(Tb)S] : $[Pb^{2+}]$ are shown.

Figure S4. An energy level diagram summarizing key photophysical processes in the Zn(Tb)S NPs is shown.

Figure S5. The normalized excitation spectra of the Zn(Tb)S/Hg and Zn(Tb)S/Pb NPs are shown in panels (a) and (b), respectively.

Figure S6. Tb³⁺ emission decay profiles in different NPs are shown.

	~ ~		1	1		-			
	Sample	a ₁	τ_1 (ms)	a ₂	τ_2 (ms)	<τ> (ms) ^b	\mathbf{R}^2		
	Zn(Tb)S	0.73 ± 0.05	0.70 ± 0.07	0.27 ± 0.05	3.10 ± 0.03	1.30 ± 0.17	0.997		
$[Zn(Tb)S] : [Hg^{2+}]$	1:10-12	0.73 ± 0.04	0.62 ± 0.06	0.27 ± 0.04	4.1 ± 0.14	1.60 ± 0.21	0.996		
	$1:10^{-10}$	0.76 ± 0.01	0.63 ± 0.01	0.24 ± 0.01	$2.90{\pm}~0.64$	1.20 ± 0.16	0.999		
	1:10-8	0.92 ± 0.04	$0.51\ \pm 0.04$	$0.08 \hspace{0.1in} \pm 0.04$	$2.10\ \pm 0.28$	0.64 ± 0.09	0.997		
	1:10-6	0.83 ± 0.07	$0.61\ \pm 0.05$	$0.17\ \pm 0.07$	$2.40\pm\ 0.07$	0.90 ± 0.18	0.998		
	1:10-4	0.80 ± 0.05	$0.56\ \pm 0.04$	$0.20\ \pm 0.05$	$2.60\ \pm 0.07$	1.00 ± 0.14	0.997		
	1:10-3	0.86 ± 0.01	0.46 ± 0.01	0.14 ± 0.01	3.30 ± 0.14	0.86 ± 0.04	0.998		
	1:10-2	0.87 ± 0.01	0.54 ± 0.01	0.13 ± 0.01	4.90 ± 0.03	1.11 ± 0.05	0.997		
$[Zn(Tb)S] : [Pb^{2+}]$	1:10-12	0.69 ± 0.01	0.53 ± 0.09	0.31 ± 0.01	3.9 ± 0.42	1.60 ± 0.15	0.995		
	$1:10^{-10}$	0.67 ± 0.01	0.49 ± 0.11	0.34 ± 0.01	$4.0\pm\!\!0.07$	1.67 ± 0.09	0.996		
	1:10-8	0.70 ± 0.14	0.55 ± 0.13	0.30 ± 0.01	2.7 ± 0.28	1.20 ± 0.15	0.996		
	1:10-6	0.66 ± 0.04	0.49 ± 0.04	0.34 ± 0.04	2.2 ± 0.07	1.07 ± 0.10	0.996		
	1:10-4	0.72 ± 0.04	0.59 ± 0.01	0.28 ± 0.04	2.3 ± 0.02	1.06 ± 0.10	0.997		
	1:10-3	0.72 ± 0.01	0.72 ± 0.07	0.28 ± 0.01	2.0 ± 0.14	1.08 ± 0.06	0.999		
	1:10-2	0.84 ± 0.01	0.83 ± 0.01	0.16 ± 0.01	2.7 ± 0.07	1.13 ± 0.03	0.999		
	1:10-1	$0.\overline{78\pm0.04}$	$0.\overline{48\pm0.01}$	$0.\overline{22\pm0.04}$	4.7 ± 0.21	$1.\overline{40\pm0.19}$	0.990		

Table S4. Lifetime Decay Parameters of Tb^{3+} Emission in the Zn(Tb)S/M [M = Hg / Pb] NPs.^a

^a The values are reported as the average and standard deviations from multiple measurements.

 $^{\mathsf{b}} <\!\! \tau \!\! > \, = a_1 \tau_1 + a_2 \tau_2.$

Figure S7. Lifetime distribution profiles of the Zn(Tb)S NPs with post-synthetic addition of Hg^{2+} and Pb^{2+} are shown in panels (a) and (b), respectively.

S9

Figure S8. The TEM with size distribution in the inset, HRTEM with SAED pattern in the inset are shown for the Zn(Tb)S, and the samples with $[Zn(Tb)S] : [Hg^{2+}] = 1:10^{-4}$ and $1:10^{-2}$.

 $[Zn(Tb)S] : [Pb^{2+}]$

Figure S9. The TEM with size distribution in the inset, HRTEM with SAED pattern in the inset are shown for the Zn(Tb)S, and the samples with $[Zn(Tb)S] : [Pb^{2+}] = 1:10^{-4}$ and $1:10^{-2}$.

Figure S10. The TEM with size distribution in the inset, HRTEM with SAED pattern in the inset are shown for the Zn(Tb)S, and the samples with $[Zn(Tb)S] : [Hg^{2+}] = 1:1$.

Figure S11. The TEM with size distribution in the inset, HRTEM with SAED pattern in the inset are shown for the Zn(Tb)S, and the samples with $[Zn(Tb)S] : [Pb^{2+}] = 1:1$.