Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Information (ESI)

Dark to Bright Fluorescence State by Inter-connecting Fluorophores:

Concentration Dependent Blue to NIR emission and Live Cell Imaging Application

Parthasarathy Gayathri,^a Siva Bala Subramaniyan,^a Anbazhagan Veerappan,^a Anwarhussaini Syed,^b Subbalakshmi Jayanty,^b Mehboobali Pannipara,^{c,d} Abdullah G. Al-Sehemi,^{c,d} Dohyun Moon^{*e} Savarimuthu Philip Anthony^{*a}

^{a)}School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India. Fax: +914362264120; Tel: +914362264101; E-mail: philip@biotech.sastra.edu

^{b)} Department of Chemistry, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Hyderabad - 500078, India

^{b)}Department of chemistry, King Khalid University, Abha 61413, Saudi Arabia. ^{c)}Research center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia.

^{b)}Beamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127beongil, Nam-gu, Pohang, Gyeongbuk, Korea, Email: dmoon@postech.ac.kr

Scheme S1. Synthesis of isomers 1-3.

¹*H* and ¹³*C* NMR of 1.

¹*H* and ¹³*C* NMR of **2**.

¹*H* and ¹³*C* NMR of **3**.

1: m/z calcd for $C_{64}H_{44}N_2O_6$ (M + H): 936.32, found: 936.30.

2: m/z calcd for $C_{64}H_{44}N_2O_6$ (M + H): 936.32, found: 936.30.

3: m/z calcd for $C_{64}H_{44}N_2O_6$ (M + H): 936.32, found: 936.20.

S.NO	Solvents	Quantum yield (Φ_F) compared to Fluorescein			
		1	2	3	
1	CH ₃ CN	0.005	0.008	0.006	
2	CHCl ₃	0.047	0.078	0.074	
3	DMF	0.016	0.029	0.021	
4	DMSO	0.013	0.016	0.014	
5	Ethyl acetate	0.021	0.037	0.028	
6	Ethanol	0.005	0.004	0.003	
7	Methanol	0.002	0.001	0.001	
8	THF	0.021	0.045	0.060	
9	Toluene	0.089	0.090	0.085	

Table S1. 1-3 fluorescence efficiency in solution compared to fluorescein.

Figure S1. Digital images and fluorescence spectra of **3** in different solvents.

Figure S2. Absorption spectra of **1-3** in different solvents.

Figure S3. Absorption spectra of (a) TPA-indanedione and (b) 3-OCH₃TPA-indanedione.

Figure S4. Concentration dependent fluorescence digital images and spectra of $2 (10^{-7} - 10^{-2} \text{ M})$ in CHCl₃. λ exc = 365 nm (for digital images) and 370 nm (for spectra).

Figure S5. Concentration dependent fluorescence spectra of (a) 1, (b) 2 and (c) 3 in CHCl₃.

Figure S6. Concentration dependent absorption spectra of (a) 1, (b) 2 and (c) 3 in CHCl₃.

Figure S7. Concentration dependent fluorescence spectra of **1** in (a) THF and (b) DMSO.

Figure S8. Confocal fluorescence microscopic images of **1**-PMMA composite thin films from different concentration.

Figure S9. Concentration dependent absorption spectra of 1 in PMMA film.

Figure S10. Concentration dependent fluorescence spectra of (a) 2 and (b) 3 in THF.

Fig. S11. Lifetime decay plot of **2** and **3** in CHCl₃ from 10^{-4} to 10^{-7} M.

Table S2. Fluorescence li	ifetime data	of 2 in CHCl ₃ at	different concentration.
---------------------------	--------------	-------------------------------------	--------------------------

Conc.	λ_{em}	B ₁ (%)	B ₂ (%)	τ_1 (ns)	τ_2 (ns)	χ^2
	(nm)					
10-4	552	0.61	99.39	3.774 ±	$7.240 \pm$	1.1
				0.065	0.033	
10-5	444	5.83	94.17	$0.97 \pm$	7.103 ±	1.02
				0.061	0.02	
10-5	534	1.78	98.22	3.695 ±	$7.226 \pm$	1.08
				0.082	0.034	
10-6	458	4.36	95.64	1.16 ±	7.354 ±	1.11
				0.091	0.021	
10-6	531	1.12	98.88	3.919 ±	7.421 ±	1.17
				1.548	0.038	
10-7	458	4.81	95.19	1.073 ±	7.353 ±	1.06
				0.080	0.02	

Conc.	λ_{em}	B ₁ (%)	B ₂ (%)	τ_1 (ns)	$\tau_2(ns)$	χ^2
	(nm)					
10-4	423	4.57	95.43	1.009 ±	$7.298 \pm$	1.02
				0.0822	0.019	
10-4	554	2.7	97.3	$3.803 \pm$	$7.308 \pm$	1.14
				0.065	0.034	
10-5	445	3.94	96.06	$0.874 \pm$	$7.558 \pm$	1.05
				0.069	0.022	
10-5	533	0.82	99.18	3.966 ±	$7.662 \pm$	1.07
				0.067	0.035	
10-6	460	3.46	96.54	1.103 ±	$7.554 \pm$	1.1
				0.114	0.019	
10-6	537	10.13	89.87	$6.670 \pm$	7.695 ±	1.13
				2.791	0.189	
10-7	456	5.48	94.52	$1.242 \pm$	7.691 ±	1.06
				0.072	0.022	

Table S3. Fluorescence lifetime data of 3 in CHCl₃ at different concentration.

Fig. S12. Intermolecular interactions in the crystal lattice of **1**. C (grey), H (white), O (red) and N (blue). Dotted lines indicate the H-bonding and C-H... π interactions in Å.

1		2		3		3-OMe-TPA	
λ _{max} (nm)	$\Phi_{\mathrm{f}}(\%)$	λ _{max} (nm)	Φ_{f} (%)	λ _{max} (nm)	Φ_{f} (%)	$\lambda_{\max} \left(nm \right)$	Φ_{f} (%)
498,622, 708	2.3	434, 536	5.3	439, 594	4.0	611	19.4

Table S4. Solid state fluorescence data of 1-3 and corresponding single AIEgen.

Figure S13. Solid state absorption spectra of 1-3.

Figure S14. Mechanofluorochromism of **3**.

Figure S15. PXRD pattern of **1**.

Figure S16. Thermogravimeric analysis of **1**.