Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022 Electronic Supplementary Material (ESI) for New Journal Chemistry This journal is © the Partner Organisations 2022

Efficient Synthesis of *N*-(Chloromethyl)nitramines *via* TiCl₄-Catalyzed Chlorodeacetoxylation

Pavel S. Gribov,^a Kyrill Yu. Suponitsky^b and Aleksei B. Sheremetev^a*

^aZelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russian Federation.

^bKurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russian Federation.

*E-mail: sab@ioc.ac.ru

CONTENTS

X-ray experiments	2
Spectral data	4
References	10
NMR spectra	11

X-ray experiments

The investigation of compounds 1e and 1q were carried out using SMART APEX2 CCD diffractometer (λ (Mo-K α)=0.71073 Å, graphite monochromator, ω scans) at 120K. Collected data were processed by the SAINT and SADABS programs incorporated into the APEX2 program package [1]. The structures were solved by the direct methods and refined by the full-matrix least-squares procedure against F^2 in anisotropic approximation. The refinement was carried out with the SHELXTL program [2]. The CCDC numbers (2125221 for compounds 1e, and 2125222 for 1q) contain the supplementary crystallographic data for this paper. These data be obtained free of charge via can www.ccdc.cam.ac.uk/data request/cif.

Crystallographic data for compounds 1e: C₄H₈N₄O₄Cl₂ are monoclinic, space group $P2_1/c$: a = 5.8212(4)Å, b = 11.9073(9)Å, c = 7.3664(5)Å, $\beta = 112.7940(10)^\circ$, V = 470.72(6)Å³, Z = 2, M = 247.04, $d_{cryst} = 1.743$ g·cm⁻³. wR2=0.0615 calculated on F^2_{hkl} for all 1209 independent reflections with $2\theta < 57.7^\circ$, (GOF=1.066, R=0.0248 calculated on F_{hkl} for 1155 reflections with $I > 2\sigma(I)$).

Figure 1. General view of compound **1e**. Thermal ellipsoids are drawn at 50% probability level.

Crystallographic data for compounds 1q: C₅H₁₀N₈O₈Cl₂ are orthorhombic, space group *Pbcn*: a = 28.4221(9)Å, b = 5.9548(2)Å, c = 25.7279(9)Å, V = 4354.4(3)Å³, Z = 12, M = 381.11, $d_{cryst} = 1.744$ g·cm⁻³. wR2=0.1029 calculated on F^{2}_{hkl} for all 4304 independent reflections with $2\theta < 52.2^{\circ}$, (*GOF*=1.192, *R*=0.0569 calculated on F_{hkl} for 3615 reflections with $I > 2\sigma(I)$).

Figure 2. General view of compound **1q**. Thermal ellipsoids are drawn at 50% probability level.

Spectral data

1,7-Dichloro-2,4,6-trinitro-2,4,6-triazaheptane (**1a**): colorless needles, mp 143-144 °C (from CHCl₃) (lit.[3] mp 144-145°C), $R_f = 0.45$. ¹H NMR (CD₃CN) δ 5.80 (s, 2H, CH₂). IR and NMR data (¹H, ¹³C, ¹⁴N) agree well with previously reported values [4]. Anal. Calcd. for C₄H₈Cl₂N₆O₆ (307.04): C, 15.65; H, 2.63; N, 27.37. Found: C, 15.69; H, 2.66; N, 27.31.

2-Nitro-2-azapropyl chloride (1b): colorless liquid, bp 41-43°C /0.5 mm (lit.[4] bp 40-41°C/0.7 mm), $R_{\rm f} = 0.65$. ¹H NMR (CDCl₃) δ 3.42 (s, 3H, CH₃), δ 5.64 (s, 2H, CH₂). NMR data agree well with previously reported values [5]. Anal. Calcd. for C₂H₅ClN₂O₂ (124.52): C, 19.29; H, 4.05; N, 22.50. Found: C, 19.33; H, 4.07; N, 22.44.

1,3-Dichloro-2-nitro-2-azapropane (**1c**): colorless liquid, bp 59-60 °C /0.5 mm, which crystallized on standing, mp 28-29 °C (lit.[3] bp 53-55°C /0.1 mm), $R_{\rm f} = 0.68$. ¹H NMR (CDCl₃) δ 5.66 (s, 2H, CH₂). IR and NMR data (¹H, ¹³C, ¹⁴N) agree well with previously reported values [3]. Anal. Calcd. for C₂H₄Cl₂N₂O₂ (158.97): C, 15.11; H, 2.54; N, 17.62. Found: C, 15.07; H, 2.62; N, 17.79.

1,5-Dichloro-2,4-dinitro-2,4-diazapentane (**1d**): colorless needles, mp 91-94°C (from CCl₄, lit.[6] 89-90°C), R_f = 0.55. ¹H NMR (CDCl₃) δ 5.62 (s, 2H, CH₂), 5.81 (s, 2H, CH₂Cl). ¹³C NMR (CDCl₃) δ 58.2, 63.4. ¹⁴N NMR (CDCl₃) δ -37.9 (NO₂). IR (KBr): 3067, 3023, 1583, 1551, 1443, 1282, 1270, 1241, 912 cm⁻¹. Anal. Calcd. for C₃H₆Cl₂N₄O₄ (233.01): C, 15.46; H, 2.60; N, 24.05. Found: C, 15.39; H, 2.61; N, 23.96.

1,6-Dichloro-2,5-dinitro-2,5-diazapentane (**1e**): colorless needles, mp 107-109°C (from CHCl₃, lit. [6] mp 107-109°C), $R_f = 0.62$. ¹H NMR (DMSO-d₆) δ 4.02 (s, 2H, CH₂), 5.02 (s, 2H, CH₂Cl). ¹³C NMR (DMSO-d₆) δ 46.9, 43.1. ¹⁴N NMR (DMSO-d₆) δ -29.9 (NO₂). IR (KBr): 3598, 3456, 3412, 1550, 1454, 1424, 1343, 1264, 1160, 915, 669 cm⁻¹. Anal. Calcd. for C₃H₆Cl₂N₄O₄ (247.03): C, 15.46; H, 2.60; N, 24.05. Found: C, 15.39; H, 2.61; N, 23.96.

1-Chloro-2,4,6-trinitro-2,4,6-triazaheptane (**1f**): colorless plates, mp 140-142°C (from CHCl₃, lit. [7] mp 139.5-141°C), $R_f = 0.5$. ¹H NMR (CD₃CN) δ 3.49 (s, 3H, CH₃), 5.67 (s, 2H, CH₂Cl), 5.80 (s, 2H, CH₂), 5.83 (s, 2H, CH₂). ¹³C NMR (CD₃CN) δ 40.8, 60.2, 65.4, 67.2. ¹⁴N NMR (CD₃CN) δ -35.7, -33.8, -29.5 (NO₂). IR (KBr): 3090, 3033, 1575, 1521, 1450, 1307, 1281, 1256, 946, 765 cm⁻¹. Anal. Calcd. for C₄H₉ClN₆O₆ (296.19): C, 17.62; H, 3.33; N, 30.83. Found: C, 17.67; H, 3.34; N, 30.72.

1-Chloro-2,4,6-trinitro-2,4,6-triazaoctane (**1g**): colorless plates, mp 115-117°C (from CHCl₃), $R_f = 0.55$. ¹H NMR (CD₃CN) δ 1.27 (t, 3H, J = 14 Hz, CH₃), 4.0-3.93 (q, 1H, J = 20.8 Hz, CH₂), 5.68 (s, 2H, CH₂Cl), 5.82 (s, 2H, C<u>H₂NCH₂</u>), 5.85 (s, 2H, NCH₂N). ¹³C NMR (CD₃CN) δ 12.3, 49.3, 60.2, 65.4, 66.5, 118.3. ¹⁴N NMR (CD₃CN) δ -35.1, -33.3, -29.6 (NO₂). IR (KBr): 3084, 3040, 2991, 1575, 1552, 1516, 1468, 1442, 1409, 1273, 1247, 1201, 1153, 1096, 1076, 1042, 934, 911 cm⁻¹. Anal. Calcd. for C₇H₁₅ClN₆O₆ (310.22): C, 20.95; H, 3.87; N, 28.32. Found: C, 21.07; H, 3.91; N, 28.21.

1-Chloro-2,4,6-trinitro-2,4,6-triazanonane (**1h**): colorless plates, mp 109-111°C (from CHCl₃), $R_{\rm f}$ = 0.55. ¹H NMR (CD₃CN) δ 0.96 (t, 3H, *J* = 14.9 Hz, CH₃), 1.81-

1.68 (m, 2H, C<u>H</u>₂CH₃), 3.89 (t, 2H, J = 15.1 Hz, NCH₂), 5.71 (s, 2H, CH₂Cl), 5.83 (s, 2H, C<u>H</u>₂NCH₂), 5.86 (s, 2H, NCH₂N). ¹³C NMR (CD₃CN) δ 10.3, 19.8, 54.5, 59.2, 64.5, 65.5. ¹⁴N NMR (CD₃CN) δ -35.1, -33.4, -29.6 (NO₂). IR (KBr): 3081, 3036, 2976, 2937, 2876, 1575, 1527, 1445, 1416, 1272, 1246, 1232, 1186, 1150, 1111, 1058, 940, 915 cm⁻¹. Anal. Calcd. for C₇H₁₅ClN₆O₆ (324.25): C, 23.97; H, 4.36; N, 27.95. Found: C, 24.01; H, 4.42; N, 27.87.

1-Chloro-2,4,6-trinitro-2,4,6-triazadecane (**1i**): colorless plates, mp 102-103°C (from CCl₄), $R_{\rm f}$ = 0.55. ¹H NMR (CD₃CN) δ 0.95 (t, 3H, J = 14.7 Hz, CH₃), 1.30-1.43 (m, 2H, CH₂), 1.63-1.73 (m, 2H, CH₂), 3.90 (t, 2H, J = 15.2 Hz, NCH₂), 5.69 (s, 2H, CH₂Cl), 5.81 (s, 2H, C<u>H</u>₂NCH₂), 5.84 (s, 2H, NCH₂N). ¹³C NMR (CD₃CN) δ 13.9, 20.6, 29.5, 53.8, 60.2, 65.4, 66.5. ¹⁴N NMR (CD₃CN) δ -35.0, -33.3, -29.6 (NO₂). IR (KBr): 3086, 3035, 2963, 2933, 2875, 1572, 1523, 1435, 1413, 1273, 1243, 1149, 1100, 1056, 937, 906, 852, 764, 672, 644, 609 cm⁻¹. Anal. Calcd. for C₇H₁₅ClN₆O₆ (338.28): C, 26.72; H, 4.80; N, 26.71. Found: C, 26.75; H, 4.78; N, 26.77.

1-Bromo-10-chloro-5,7,9-trinitro-5,7,9-triazadecane (**1j**): colorless plates, mp 96-97.5°C (from CCl₄), $R_f = 0.62$. ¹H NMR (CD₃CN) δ 1.86-1.88 (m, 4H, 2CH₂), 3.51 (t, 2H, J = 12.2 Hz, CH₂Br), 3.94 (t, 2H, J = 13.7 Hz, NCH₂), 5.69 (s, 2H, CH₂Cl), 5.82 (s, 2H, C<u>H</u>₂NCH₂), 5.85 (s, 2H, NCH₂N). ¹³C NMR (CD₃CN) δ 26.3, 30.6, 34.4, 53.1, 60.2, 65.5, 66.6. ¹⁴N NMR (CD₃CN) δ -35.1, -33.4, -29.7 (NO₂). IR (KBr): 3087, 3039, 2966, 1566. 1525, 1448, 1431, 1408, 1273, 1109, 1086, 1063, 1022, 931, 908 cm⁻¹. Anal. Calcd. for C₇H₁₅ClN₆O₆ (417.17): C, 21.36; H, 3.59; N, 21.35. Found: C, 21.43; H, 3.63; N, 21.27.

1-Chloro-2,4,6-trinitro-2,4,6-triaza-9-methyldecane (**1k**): colorless plates, mp 114-116°C (from CCl₄), $R_f = 0.55$. ¹H NMR (CD₃CN) δ 0.97 (t, 3H, J = 6.2 Hz, CH₃), 1.70-1.57 (m, 3H, C<u>HCH₂</u>), 3.94 (t, 2H, J = 15.2 Hz, NCH₂), 5.71 (s, 2H, CH₂Cl), 5.83 (s, 2H, CH₂NC<u>H₂</u>), 5.86 (s, 2H, NCH₂N). ¹³C NMR (CD₃CN) δ 21.6, 25.8, 34.9, 51.6, 59.2, 64.5, 65.5. ¹⁴N NMR (CD₃CN) δ -35.1, -33.4, -29.7 (NO₂). IR (KBr): 3081, 3046, 2961, 2932, 2875, 1590, 1523, 1449, 1415, 1272, 1185, 1157, 1100, 1078, 942, 914 cm⁻¹. Anal. Calcd. for C₇H₁₅ClN₆O₆ (352.30): C, 29.23; H, 5.21; N, 25.57. Found: C, 29.34; H, 5.16; N, 25.43.

1-Chloro-2,5,7-trinitro-2,5,7-triazaoctane (**11**): colorless plates, mp 116-119°C (from CCl₄), $R_{\rm f} = 0.42$. ¹H NMR (CD₃CN) δ 3.48 (s, 3H, CH₃), 4.12 (t, 2H, J = 11.3 Hz, CH₂), 4.25 (t, 2H, J = 11.5 Hz, CH₂), 5.50 (s, 2H, CH₂Cl), 5.66 (s, 2H, CH₂). ¹³C NMR (CD₃CN) δ 40.6, 49.6, 51.0, 61.2, 68.4. ¹⁴N NMR (CD₃CN) δ - 32.6, -29.8, -28.7 (NO₂). IR (KBr): 3067, 3010, 1553, 1533, 1459, 1321, 1293, 1264, 1069, 968, 946, 905, 764, 676 cm⁻¹. Anal. Calcd. for C₅H₁₁ClN₆O₆ (310.22): C, 20.95; H, 3.87; N, 29.32. Found: C, 21.04; H, 3.82; N, 29.25.

1-Chloro-2,5,7-trinitro-2,5,7-triazanonane (**1m**): colorless plates, mp 87-89.5°C (from CCl₄), $R_f = 0.45$. ¹H NMR (CD₃CN) δ 1.23 (t, 3H, J = 14 Hz, CH₃), 3.93 (q, 2H, J = 20.9 Hz, CH₂), 4.12 (t, 2H, J = 11.3 Hz, CH₂), 4.25 (t, 2H, J = 11.4 Hz, CH₂), 5.49 (s, 2H, CH₂Cl), 5.66 (s, 2H, CH₂). ¹³C NMR (CD₃CN) δ 12.2, 49.0, 49.5, 50.9, 61.1, 67.6. ¹⁴N NMR (CD₃CN) δ -32.6, -29.8 (NO₂). IR (KBr): 3081, 3019, 2978, 2938, 1551, 1510, 1456, 1286, 1246, 1065, 1034, 762 cm⁻¹. Anal. Calcd. for C₆H₁₃ClN₆O₆ (324.25): C, 23.97; H, 4.36; N, 27.95. Found: C, 24.10; H, 4.33; N, 28.28.

1-Chloro-7-cyclohexyl-2,5,7-trinitro-2,5,7-triazaheptane (**1n**): colorless plates, mp 100-102°C (from CCl₄), $R_f = 0.5$. ¹H NMR (CD₃CN) δ 1.26-1.18 (m, 1H), 1.41-1.35 (m, 2H), 1.66 (d, 1H, J = 13.3 Hz), 1.81-1.74 (m, 2H), 1.86 (m, 4H), 4.13 (t, 2H, J = 11.5 Hz, NCH₂C<u>H₂</u>), 4.21 (t, 1H, J = 9.6 Hz, NCH), 4.24 (t, 2H, J = 11.6 Hz, NC<u>H₂CH₂</u>), 5.53 (s, 2H, CH₂Cl), 5.67 (s, 2H, CH₂). ¹³C NMR (CD₃CN) δ 25.9, 26.5, 29.8, 49.5, 50.6, 61.1, 64.3, 65.3. ¹⁴N NMR (CD₃CN) δ -32.5, -29.8 (NO₂). IR (KBr): 2947, 2859, 1565, 1534, 1456, 1421, 1334, 1275, 1151, 1129, 1058, 1001, 759, 661, 607 cm⁻¹. Anal. Calcd. for C₁₀H₁₉ClN₆O₆ (378.34): C, 33.86; H, 5.40; N, 23.69. Found: C, 33.79; H, 5.45; N, 23.63.

1-Bromo-9-chloro-3,5,8-trinitro-2,5,8-triazanonane (**1o**): colorless plates, mp 100-102°C (from CCl₄), $R_f = 0.43$. ¹H NMR (CD₃CN) δ 3.68 (t, 2H, J = 13.3 Hz, NCH₂C<u>H</u>₂Br), 4.14 (t, 2H, J = 11.5 Hz, NC<u>H</u>₂CH₂Br), 4.26-4.33 (q, 4H, NC<u>H</u>₂C<u>H</u>₂N), 5.58 (s, 2H, CH₂Cl), 5.68 (s, 2H, CH₂). ¹³C NMR (CD₃CN) δ 27.5, 48.5, 55.1, 53.7, 60.2, 67.1. ¹⁴N NMR (CD₃CN) δ -32.5, -30.2 (NO₂). IR (KBr): 3075, 3023, 2955, 1547, 1513, 1458, 1446, 1413, 1334, 1291, 1276, 1248, 1218, 1195, 1155, 1124, 1084, 1064, 1032, 999, 951, 916, 877, 819, 759 cm⁻¹. Anal. Calcd. for C₆H₁₂BrClN₆O₆ (403.14): C, 18.99; H, 3.19; N, 22.14. Found: C, 19.07; H, 3.23; N, 22.03.

1-Bromo-9-chloro-3,6,8,11-tetranitro-3,6,8,11-tetraazaundecane (**1p**): colorless plates, mp 163-165°C (from C₂H₄Cl₂), $R_f = 0.45$. ¹H NMR (CD₃CN) δ 3.68 (t, 2H, J = 12.7 Hz, CH₂Br), 4.11-4.17 (q, 4H, C<u>H₂NCH₂</u>), 4.26 (t, 2H, J = 11.7 Hz, CH₂C<u>H₂N</u>), 5.70 (s, 2H, CH₂Cl), 5.82 (s, 2H, CH₂NC<u>H₂</u>), 5.85 (s, 2H, NCH₂N). ¹³C NMR (CD₃CN) δ 27.7, 49.9, 50.0, 53.8, 59.2, 64.4, 66.3. ¹⁴N NMR (CD₃CN) δ -35.1, -33.5, -29.1 (NO₂). IR (KBr): 3085, 3029, 1574, 1534, 1457, 1443, 1418, 1330, 1271, 1248, 1236, 1218, 1133, 1112, 1070, 917, 764, 667, 640, 607 cm⁻¹.

Anal. Calcd. for C₇H₁₄BrClN₈O₈ (453.59): C, 18.54; H, 3.11; N, 24.70. Found: C, 18.62; H, 3.20; N, 24.57.

1,9-Dichloro-2,4,6,8-tetraitro-2,4,6,8-tetraazanonane (**1q**): colorless plates, mp 183-186°C (from C₂H₄Cl₂) (lit. [7] mp 195-198°C), $R_f = 0.4$. ¹H NMR (CD₃CN) δ 5.82 (s, 2H, CH₂Cl), 5.83 (s, 2H, NCH₂), 5.88 (s, 2H, NCH₂N). ¹³C NMR (CD₃CN) δ 60.2, 65.5, 65.9. ¹⁴N NMR (CD₃CN) δ -33.4 (NO₂). IR (KBr): 3069, 1586, 1565, 1443, 1370, 938, 912 cm⁻¹. Anal. Calcd. For C₅H₁₀Cl₂N₈O₈ (381.08): C, 15.76; H, 2.65; N, 29.40. Found: C, 15.84; H, 2.69; N, 29.34.

1,8-Dichloro-2,7-dinitro-2,7-diazaoctane (**1r**): colorless needles, mp 91-94°C (from CCl₄) (lit. [8] mp 82-83°C), $R_{\rm f} = 0.57$. ¹H NMR (CDCl₃) δ 1.88 (m, 2H, C<u>H</u>₂C<u>H</u>₂), 3.87 (s, 2H, CH₂N), 5.63 (s, 2H, CH₂Cl). ¹³C NMR (CDCl₃) δ 24.5, 50.3, 58.9. ¹⁴N NMR (CDCl₃) δ -34.1 (NO₂). IR (KBr): 3059, 3003, 2966, 2955, 2933, 2864, 1535, 1452, 1298, 1268, 1154, 1058, 920, 908, 629 cm⁻¹. Anal. Calcd. for C₆H₁₂Cl₂N₄O₄ (275.09): C, 26.20; H, 4.40; N, 20.37. Found: C, 26.26; H, 4.42; N, 20.28.

References

- 1. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, 2014
- 2. G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3-8.
- T. M. Klapötke, B. Krumm, F. X. Steemann, *Propellants Explos. Pyrotech.*, 2009, 34, 13–23 DOI: 10.1002/prep.200700261
- E. T. Apasov, A. V. Kalinin, S. L. Ioffe, V. A. Tartakovskii, *Russ. Chem. Bull.*, **1993**, 42, 1262–1263 [Translation of *Izv. Akad. Nauk SSSR, Ser. Khim.*, **1993**, 1319–1320] **DOI**: 10.1007/BF00702022]
- 5. N. Fischer, K. Karaghiosoff, T. M. Klapoetke, J. Stierstorfer. Z. Anorg. Allgem. Chem., 2010, 636, 735 – 749 DOI: 10.1002/zaac.200900521.
- J. Majer, J. Denkstein. Coll. Czech. Chem. Commun. 1966, 31, 2547 2557
 DOI: 10.1135/cccc19662547
- 7. D. M. Cason-Smith, Pat US 5243075, 1993.
- 8. A.L. Fridman, L. O. Kon'shina, S. A. Petukhov. J. Org. Chem. USSR, 1975, 11, 1176 1179 [Translation of Zh. Org. Khim., 1975, 11, 1187 1190].

NMR spectra

-10 ppm

350 300 250 200 150 100 50 0 -50 -100 -150 -200 -250 -300 -350 -400 -450 -500 -550 ppm

300 0 -50 350 250 200 150 100 50 -100 -150 -200 -250 -300 -350 ppm

ppm

4.0 3.5 2.0 5.5 1.5 9.5 9.0 7.5 7.0 6.0 4.5 2.5 0.5 ppm 8.5 8.0 6.5 5.0 3.0 1.0 20.675 22.111

550 500 450 400 350 300 250 200 150 100 50 0 -50 -100 -150 -200 -250 -300 -350 ppm