Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information file

Synthesis, Crystal Structures of Two Tri and Tetra Heterometallic Ni (II)-Mn (II)/Ni (II)-Co (III) Complexes from Two Different Ni (II) Containing Metalloligand: Effective Catalytic Oxidase Activity and Schottky Device Approach

Manik Das^a, Mainak Das^b, Subham Ray^a, Uttam Kumar Das^c, Soumik Laha^d, Partha Pratim Roy^b, Bidhan Chandra Samanta^e, Tithi Maity^a*

^a Department of Chemistry, Prabhat Kumar College, Contai, Contai, Purba Medinipur, West

Bengal, India

- ^b Department of Physics, Jadavpur University, Kolkata, India
- ^c Department of Chemistry, School of Physical Science, Mahatma Gandhi Central University, Bihar, India.
- ^d IICB, Kolkata, West Bengal, India
- ^e Mugberia Gangadhar Mahavidyalaya, Purbamedinipur, West Bengal India Email: <u>titlipkc2008@gmail.com</u>

List of Figures and tables

Figure	Figure caption	Page number
Number		
Fig. S1	FTIR spectrum of complex 1	S3
Fig. S2	FTIR spectrum of complex 2	S4
Fig. S3	UV spectrum of a) complex 1 b) complex 2	S5
Fig. S4	ESI-MS analyses of complex 1	S6
Fig. S5	ESI-MS analyses of complex 2	S6
Fig. S6	TGA plot of complex 1	S7
Fig. S7	ESI-MS analyses with isotopic distribution of complex 1 with 3,5-	S8
	DTBC	
Fig. S8	ESI-MS analyses with isotopic distribution of complex 2 with 3,5-	S9
	DTBC	
Fig. S9	Change of absorbance plot with respect to time for estimation	S10
	of H_2O_2 generated during catalysis in presence of complexes	
	1 and 2	
Fig. S10	Band gap energy plot of complex 1, 2	S11

Fig. S1: FT IR spectrum of complex 1

Fig. S2: FT IR spectrum of complex 2

Fig. S3: UV spectrum of a) complex 1 b) complex 2

Fig. 4: ESI-MS analyses of complex 1

Fig. S5: ESI-MS analyses of complex 2

Fig. S6: TGA plot of complex 1

Weight loss calculation:

Orthorhombic Pccn space group, Z=4Therefore FW= unit cell contents/Z = 1206 + 117 electrons (squeeze results) = 1206 + 4 water molecules squeezed = 1206 + 4 × 18 = 1206 + 72 = 1278 Weight loss for four water molecules = 72/1278 × 100 % = 5.36 % (obtained: 5.31 %)

Fig. S7: ESI-MS analyses with isotopic distribution of complex 1 with 3,5-DTBC

Fig. S8: ESI-MS analyses with isotopic distribution of complex 2 with 3,5-DTBC

Fig. 9: Change of absorbance plot with respect to time for estimation of H_2O_2 , generated during catalysis in presence of complexes 1 and 2

Experimental details: Equal volumes of Complex 1, 2, and catechol solutions were prepared and mixed as per the requirement to investigate kinetic studies. After an hour, the solution was acidified with H_2SO_4 to convert the pH of the solution to 2 and then an equal volume of water was added to the solution, to prevent any further oxidation. The quinone (3,5-DTBQ) was formed as a product and it was extracted with dichloromethane. After that 1 mL of a 10% solution of KI was mixed with the aqueous layer followed by the addition of three drops of 3% ammonium molybdate solution and the formation of I^{3–} was monitored spectrophotometrically by enhancement of its characteristic absorption band at $\lambda = 353$ nm ($\epsilon = 26000$ M⁻¹cm⁻¹).

Fig. S10: Band gap energy calculation plot of complex 1, 2