Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

## Insight into the adsorption properties of β-cyclodextrin/phillipsite organophilic composite for

## effective removal of toxic organophosphorous pesticides: kinetic and advanced equilibrium

## studies

Sarah I. Othman<sup>1</sup>, Haifa A. Alqhtani<sup>1</sup>, Ahmed A. Allam<sup>2</sup>, Abdelrahman M. Rabie <sup>3</sup>, Asmaa A. Abdelrahman<sup>4</sup>, Heba M. Salem<sup>4</sup>, Mostafa R. Abukhadra<sup>5,6 e</sup>

<sup>1</sup>Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
<sup>2</sup>Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
<sup>3</sup>Petrochemical Department, Egypt Petroleum Research Institute, Nasr city, 112672, Egypt
<sup>4</sup>Refining Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt
<sup>6</sup>Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt
<sup>6</sup>Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef City, Egypt.
Corresponding author\*.Tel: +2001288447189. E-mail: <u>Abukhadra89@Science.bsu.edu.eg</u>

| Kinetic models              |                                                                                                                                                          |                                                                                 |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Model                       | Equation                                                                                                                                                 | Parameters                                                                      |
| Pseudo-first-order          | $Q_t = Q_c (1 - e^{-k_1 \cdot t})$                                                                                                                       | $Q_t$ (mg/g) is the adsorbed ions at time (t), and $K_1$ is the                 |
|                             | $q_t q_e(1 \circ f)$                                                                                                                                     | rate constant of the first-order adsorption (1/min)                             |
| Pseudo-second-order         | $Q_e^2 k_2 t$                                                                                                                                            | Qe is the quantity of adsorbed ions after equilibration                         |
|                             | $Q_t = \frac{Q_e^2 k_2 t}{1 + Q_e k_2 t}$                                                                                                                | (mg/g), and $K_2$ is the model rate constant (g/mg min).                        |
|                             | Classic Isotherm                                                                                                                                         | nodels                                                                          |
| Model                       | Equation                                                                                                                                                 | Parameters                                                                      |
| Langmuir                    | $Q_e = \frac{Q_{max} bC_e}{(1 + bC_e)}$                                                                                                                  | $C_e$ is the rest ions concentrations (mg/L), $Q_{max}$ is the                  |
|                             | $Q_e = \frac{1}{(1 + bC_e)}$                                                                                                                             | theoritical maximum adsorption capacity (mg/g), and b is                        |
|                             |                                                                                                                                                          | the Langmuir constant (L/mg)                                                    |
| Freundlich                  | $Q_e = K_f C_e^{1/n}$                                                                                                                                    | $K_{\scriptscriptstyleF}$ (mg/g) is the constant of Freundlich model related to |
|                             |                                                                                                                                                          | the adsorption capacity and n is the constant of                                |
| Dubinin–Radushkevich        |                                                                                                                                                          | Freundlich model related to the adsorption intensities                          |
|                             | $Q_e = Q_m e^{-\beta \varepsilon^2}$                                                                                                                     | $\beta$ (mol²/KJ²) is the D-R constant, $\epsilon$ (KJ²/mol²) is the            |
|                             | e e em                                                                                                                                                   | polanyil potential, and $Q_m$ is the adsorption capacity                        |
|                             |                                                                                                                                                          | (mg/g)                                                                          |
|                             | Advanced isotherm                                                                                                                                        | models                                                                          |
| Model                       | Equation                                                                                                                                                 | Parameters                                                                      |
| Monolayer model with one    | $Q = nN_o = \frac{nN_M}{1 + (\frac{C1/2}{C})^n} = \frac{Q_o}{1 + (\frac{C1/2}{C})^n}$                                                                    | Q is the adsorbed quantities in mg/g                                            |
| energy site (Model 1)       | $1 + (\frac{C1/2}{C})^n  1 + (\frac{C1/2}{C})^n$                                                                                                         | n is the number of adsorbed ion per site                                        |
|                             |                                                                                                                                                          | Nm is the density of the effective receptor sites (mg/g)                        |
| Monolayer model with two    | $Q = \frac{n_1 N_{1M}}{1 + \left(\frac{1}{2}\right)^{n_1}} + \frac{n_2 N_{2M}}{1 + \left(\frac{1}{2}\right)^{n_2}}$                                      | $Q_{\circ}$ is the adsorption capacity at the saturation state in               |
|                             | $C_{1,n_1}$ $C_{2,n_2}$                                                                                                                                  | mg/g                                                                            |
| energy sites (Model 2)      | $1 + \left(\frac{1}{C}\right)$ $1 + \left(\frac{1}{C}\right)$                                                                                            | 55                                                                              |
|                             |                                                                                                                                                          | C1/2 is the concentration of the ions at half saturation                        |
| Double layer model with one | $(\frac{C}{2})^n + 2(\frac{C}{2})^{2n}$                                                                                                                  | stage in mg/L                                                                   |
|                             | $Q = Q_o \frac{\left(\frac{C}{C1/2}\right)^n + 2\left(\frac{C}{C1/2}\right)^{2n}}{1 + \left(\frac{C}{C1/2}\right)^n + \left(\frac{C}{C1/2}\right)^{2n}}$ | C1 and C2 are the concentrations of the ions at the half                        |
| energy site (Model 3)       | $1 + (\frac{c}{c_{1/2}})^n + (\frac{c}{c_{1/2}})^{2n}$                                                                                                   | saturation stage for the first active sites and the second                      |
|                             | C1/2 C1/2                                                                                                                                                | active sites, respectively                                                      |
| Double layer model with two | $(\frac{C}{L})^n + 2(\frac{C}{L})^{2n}$                                                                                                                  |                                                                                 |
|                             | $Q = Q_0 \frac{\left(\frac{C}{C1}\right)^n + 2\left(\frac{C}{C2}\right)^{2n}}{1 + \left(\frac{C}{C2}\right)^n + \left(\frac{C}{C2}\right)^{2n}}$         | n1 and n2 are the adsorbed ions per site for the first                          |
|                             | $C_{n}$                                                                                                                                                  | active sites and the second active sites, respectively                          |
| energy sites (Model 3)      | $1 + (\frac{1}{24})^n + (\frac{1}{22})^{2n}$                                                                                                             |                                                                                 |
| energy sites (Model 3)      | $1 + (\frac{1}{C1})^n + (\frac{1}{C2})^{2n}$                                                                                                             |                                                                                 |

## Table.S1. Nonlinear equations of kinetic, classic isotherm, and advanced isotherm models

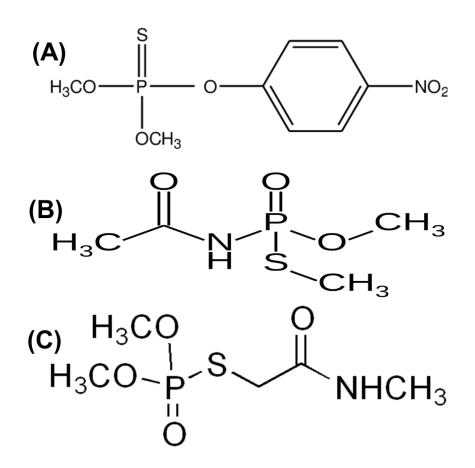



Fig.S1. The molecular structures of MPn (A), AC (B), and OM (C) pesticides

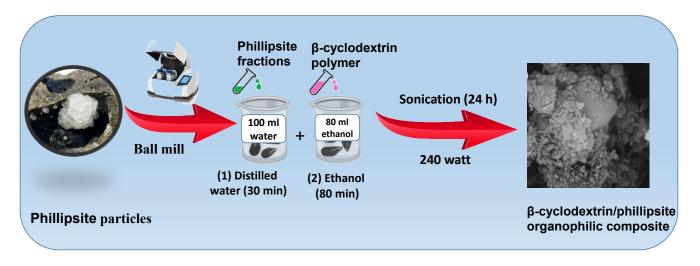



Fig.S2. Schematic diagram for the synthesis of CD/Ph composite

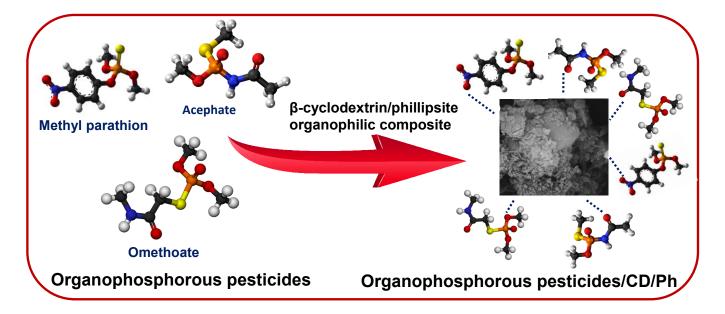



Fig.S3. Schematic diagram for adsorption of the different species of pesticides by CD/Ph composite