Thermally treated MgO/nanocrystalline cellulose immobilized onto Santa Barbara-16 mesoporous SiO₂ template for sequestration of antibiotics from polluted water

Martins O. Omorogie^{1,2,3,‡}, Faith O. Ilesanmi^{1,2}, Moses O. Alfred^{1,2}, Brigitte Helmreich³

¹Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, Ede, 232101, Nigeria

²Water Science and Technology Research Unit, African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B. 230, Ede, 232101, Nigeria

³Chair of Urban Water Systems Engineering, Technical University of Munich (TUM), Am Coulombwall 3, 85748, Garching, Germany

[‡]Corresponding Author: <u>omorogiem@run.edu.ng</u>, <u>mo.omorogie@tum.de</u>

Electronic Supplementary Information (ESI)

Tables

Table S1: Equilibrium table for AMP by MNCS-450, MNCS-650 and MNCS-850.

dsorbents		MNCS-450			MNCS-650			MNCS-8	MNCS-850	
Temperatures	25 °C	40 °C	55 °C	25 °C	40 °C	55 °C	25 °C	40 °C	55 °C	
FM										
1/ <i>n</i>	1.129	1.283	2.592	0.722	0.837	0.926	1.055	1.135	1.321	
K_F (mg.g ⁻¹)(L.mg ⁻¹) ^{1/n}	0.642	1.285	2.294	1.874	2.016	2.381	2.677	2.544	2.879	
r^2	0.923	0.939	0.942	0.887	0.940	0.990	0.814	0.903	0.968	
LM										
$q_{\max_{L}}$ (mg.g ⁻¹)	3.622	3.791	3.973	3.890	4.260	4.413	4.089	4.460	4.613	
K_L (L.mg ⁻¹)	0.002	0.013	0.078	0.003	0.017	0.028	0.097	0.116	0.393	
r^2	0.927	0.951	0.963	0.931	0.937	0.970	0.972	0.978	0.986	
LFM										
$q_{\max_{LF}}$ (mg.g ⁻¹)	3.527	3.840	4.147	4.053	4.241	4.382	4.226	4.587	4.888	
$K_{_{LF}}$ (mg.g ⁻¹)(L.mg ⁻¹) ^{1/n}	0.838	1.489	2.130	0.634	2.533	2.690	2.710	2.722	3.071	
$n_{_{LF}}$	0.119	0.304	0.333	0.525	0.699	0.748	0.633	0.818	1.273	
r^2	0.991	0.992	0.994	0.995	0.996	0.998	0.992	0.994	0.995	

AMP						
	MNCS-450	MNCS-650	MNCS-850			
PFOM						
$q_e (\text{mg g}^{-1})$	3.309	4.020	4.500			
$k_1(\min^{-1})$	0.146	0.173	0.162			
r^2	0.973	0.988	0.932			
PSOM						
$q_e (\text{mg g}^{-1})$	3.514	4.404	4.639			
k_2 (g mg ⁻¹ min ⁻¹)	0.035	0.046	0.044			
r^2	0.989	0.990	0.992			
MOM						
$q_e \ (\mathrm{mg \ g^{-1}})$	3.657	4.574	4.838			
$k_{1,2}$ (g mg ⁻¹ min ⁻¹)	0.032	0.106	0.060			
η	0.839	0.494	0.958			
r^2	0.999	0.999	0.999			

Table S2: Kinetic table for AMPby MNCS-450, MNCS-650 and MNCS-850.

Table S3: Kinetic table for CIPby MNCS-450, MNCS-650 and MNCS-850.

CIP							
	MNCS-450	MNCS-650	MNCS-850				
PFOM							
$q_e (\mathrm{mg \ g^{-1}})$	3.360	3.711	4.523				
$k_1(\min^{-1})$	0.035	0.027	0.021				
r^2	0.904	0.946	0.931				
PSOM							
$q_e (\text{mg g}^{-1})$	3.549	3.835	4.630				
$k_2(\text{ g mg}^{-1} \min^{-1})$	0.039	0.036	0.042				
r^2	0.988	0.989	0.989				
MOM							
$q_e \pmod{\mathrm{g}^{-1}}$	3.640	3.906	4.891				
$k_{1,2} $ (g mg ⁻¹ min ⁻¹)	0.009	0.006	0.008				
η	0.095	0.092	0.093				
r^2	0.997	0.998	0.999				

Figures

Figure S1: TGA plots for MNCS-450, MNCS-650 and MNCS-850.

Figure S2: DSC plots for MNCS-450, MNCS-650 and MNCS-850.

Figure S3: FTIR spectra for MNCS-650, AMP loaded- MNCS-650and CIP loaded MNCS-650.