Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

A New Organic-Inorganic Hybrid Perovskite Ferroelectric [CICH₂CH₂N(CH₃)₃][PbBr₃] and Its PVDF Matrix-assisted Highlyoriented Flexible Ferroelectric Films

Duo-Fu Li, Peng-Ju Zhao, Xiang-Hong Deng, Yao-Zhen Wu, Xiao-Li He, Dong-Sheng Liu, Yong-Xiu Li and Yan Sui

Calculation of the polarization of CEPbBr with a point charge model

Figure S1. Atoms distribution of low-temperature phase of **CEPbBr** at 223 K for the calculation of polarization with a point charge model.

According to the crystal structure data collected at 223 K, we select a unit cell and make an assumption that the positive charge of $[ClCH_2CH_2N(CH_3)_3]^+$ and the negative charge of $[PbBr_3]^-$ is on the N atom and Pb atom, respectively.

Atoms		Coordinate	Center coordinate	
Pb	0.5	0.5	0.28	
Pb	1	1	0.78	(0.5,0.5,0.53)
Pb	1	0	0.28	
Pb	0	1	0.28	
Pb	0	0	0.28	
Pb	1	1	0.28	

Pb	1	0	0.78		
Pb	0	0	0.78		
Pb	0.5	0.5	0.78		
Pb	0	1	0.78		
N	0.5	0.182	0.62		
N	0	0.318	0.12	(0.5,0.5,0.37)	
N	0	0.682	0.62		
N	1	0.682	0.62		
N	0.5	0.818	0.12		
N	1	0.318	0.12		

According to the center coordinate, the polarization can only be calculated along c axis, it does not exist along a or b axis.

$$P_{S} = lim \frac{1}{V} \sum q_{i}r_{i}$$

$$= (q_{Pb}r_{Pb} + q_{N}r_{N}) / V$$

$$= [(-e \times 0.53) + (e \times 0.37)] \times 4 \times c/V$$

$$= [-0.16 \times 4 \times 1.6 \times 10^{-19} \times 8.747 \times 10^{-10} \text{ Cm}] / (1259 \times 10^{-30} \text{ m}^{3})$$

$$= -6.6 \times 10^{-2} \text{ Cm}^{-2}$$

$$|Ps| = 6.6 \ \mu\text{C cm}^{-2}$$

Figure S2. Atoms distribution of high-temperature phase of **CEPbBr** at 340 K for the calculation of polarization with a point charge model.

According to the crystal structure data collected at 340 K, we select a unit cell and

make an assumption that the positive charge of $[ClCH_2CH_2N(CH_3)_3]^+$ and the negative charge of $[PbBr_3]^-$ is on the N atom and Pb atom, respectively.

• •		C 1' (
Atoms		Coordinate	Center coordinate		
N	0.636	0.906	0.871		
N	0.136	0.594	0.871		
N	0.864	0.406	0.371	(0.5,0.5,0.6145)	
N	0.562	0.876	0.858		
N	0.062	0.624	0.858		
N	0.364	0.094	0.371		
N	0.938	0.376	0.358		
N	0.438	0.124	0.358		
Pb	0.055	0.248	0.857	(0.5,0.5,0.607)	
Pb	0.555	0.252	0.857		
Pb	0.445	0.748	0.357		
Pb	0.945	0.752	0.357		

According to the center coordinate, the polarization can only be calculated along c axis, it does not exist along a or b axis.

$$P_{S} = lim_{\overline{V}}^{1} \sum q_{i}r_{i}$$

= $(q_{Pb}r_{Pb} + q_{N}r_{N}) / V$
= $[(-e \times 0.607) + (e \times 0.6145)] \times 2 \times c/V$
= $[0.0075 \times 2 \times 1.6 \times 10^{-19} \times 9.7334 \times 10^{-10} \text{ Cm}] / (1330.500 \times 10^{-30} \text{ m}^{3})$
= $1.756 \times 10^{-3} \text{ Cm}^{-2}$
 $|Ps| = 0.1756 \mu \text{ Cm}^{-2}$