Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Synthesis, Characterization, Photophysical and Photochemical Studies of BODIPY derivatives

Ezel ÖZTÜRK GÜNDÜZ^a, Hande ESERCI^a, Berkan TASASIZ^a, Elif YILDIZ GÜL^b, Esra TANRIVERDI EÇIK^b, Elif OKUTAN^{a*}

^a Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli,

Scheme S1. Synthesis of compounds 1-7	3
Fig. S1. MALDI-MS spectrum of compound 8	4
Fig. S2. ¹ H NMR spectrum of compound 8 in CDCl ₃	5
Fig. S3. ¹³ C NMR spectrum of compound 8 in CDCl ₃	5
Fig. S4 MALDI-MS spectrum of compound 9	6
Fig. S5 ¹ H NMR spectrum of compound 9 in CDCl ₃	7
Fig. S6 ¹³ C NMR spectrum of compound 9 in CDCl ₃	8
Fig. S7 MALDI-MS spectrum of compound 10	9
Fig. S8 ¹ H NMR spectrum of compound 10 in CDCl ₃	10
Fig. S9 ¹³ C NMR spectrum of compound 10 in CDCl ₃	11
Fig. S10 MALDI-MS spectrum of compound 11	12
Fig. S11 ¹ H NMR spectrum of compound 11 in CDCl ₃	13
Fig. S12 ¹³ C NMR spectrum of compound 11 in CDCl ₃	14
Fig. S13 MALDI-MS spectrum of compound 12	15
Fig. S14 ¹ H NMR spectrum of compound 12 in CDCl ₃	16
Fig. S15 ¹³ C NMR spectrum of compound 12 in CDCl ₃	17
Fig. S16 MALDI-MS spectrum of compound 13	18
Fig. S17 ¹ H NMR spectrum of compound 13 in CDCl ₃	19
Fig. S18 ¹³ C NMR spectrum of compound 13 in CDCl ₃	19
Fig. S19 MALDI-MS spectrum of compound 14	20
Fig. S20 ¹ H NMR spectrum of compound 14 in CDCl ₃	21
Fig. S21 ¹³ C NMR spectrum of compound 14 in CDCl ₃	22
Fig. S22 MALDI-MS spectrum of compound 15	23
Fig. S23 ¹ H NMR spectrum of compound 15 in CDCl ₃	24
Fig. S24 ¹³ C NMR spectrum of compound 15 in CDCl ₃	24
Fig. S25 MALDI-MS spectrum of compound 16	25
Fig. S26 ¹ H NMR spectrum of compound 16 in CDCl ₃	26
Fig. S27 ¹³ C NMR spectrum of compound 16 in CDCl ₃	26
Fig. S28 Absorbance spectra of compounds (a) 8, (b) 9 and (c) 10 in different solvents $(1 \ \mu M)$	27
Fig. S29 Absorbance spectra of compounds (a) 11, (b) 12 and (c) 13 in different solvents $(1 \ \mu M)$	27
Fig. S30 Absorbance spectra of compounds (a) 14, (b) 15 and (c) 16 in different solvents (1 μ M)	27
Fig. S31 Absorption spectra of compounds (a) 8, (b) 9 and (c) 10 in DCM at different concentration	ıs27
Fig. S32 Absorption spectra of compounds (a) 11, (b) 12 and (c) 13 in DCM at different concentrat	ions 28

Fig. S33 Absorption spectra of compounds (a) 14, (b) 15 and (c) 16 in DCM at different concentration	ons 28
Fig. S34 Absorption spectra of compounds (a) 8, (b) 9 and (c) 10 in DMSO at different concentration	ons28
Fig. S35 Absorption spectra of compounds (a) 11, (b) 12 and (c) 13 in DMSO at different	29
Fig. S36 Absorption spectra of compounds (a) 14, (b) 15 and (c) 16 in DMSO at different concentra	tions
	29
Fig. S37 Fluorescence spectra of compounds (a) 8, (b) 9 and (c) 10 (0.5 μ M, λ_{ex} :470 nm) in different	t
solvents	29
Fig. S38 Fluorescence spectra of compounds (a) 11 (λ_{ex} :500 nm), (b) 12 (λ_{ex} :510 nm) and (c) 13 (λ_{ex}	:510
nm), in different solvents (0.5 µM)	30
Fig. S39 Fluorescence spectra of compounds (a) 14 (λ_{ex} :500 nm), (b) 15 (λ_{ex} :510 nm) and (c) 16 (λ_{ex}	:510
nm), in different solvents (0.5 μM)	30
Fig. S40 Fluorescence decay profiles of compounds 11-16 in DCM	31
Fig. S41 Decrease in absorbance spectra of DPBF in the presence of MB in DMSO	32
Fig. S42 Decrease in absorbance spectra of DPBF in the presence of RB in DMSO	33
Fig. S43 Decrease in absorbance spectra of DHN in the presence of MB	34
Fig. S44 Decrease in absorbance spectra of DHN in the presence of RB	35

Scheme S1. Synthesis of compounds 1-7

Fig. S1. MALDI-MS spectrum of compound 8

Fig. S3. ¹³C NMR spectrum of compound 8 in CDCl₃

Fig. S4 MALDI-MS spectrum of compound 9

Fig. S5 ¹H NMR spectrum of compound 9 in CDCl₃

Fig. S6 ¹³C NMR spectrum of compound 9 in CDCl₃

Fig. S7 MALDI-MS spectrum of compound 10

Fig. S8 ¹H NMR spectrum of compound 10 in CDCl₃

Fig. S9 ¹³C NMR spectrum of compound 10 in CDCl₃

Fig. S10 MALDI-MS spectrum of compound 11

Fig. S11 ¹H NMR spectrum of compound 11 in CDCl₃

Fig. S12 ¹³C NMR spectrum of compound 11 in CDCl₃

Fig. S13 MALDI-MS spectrum of compound 12

Fig. S14 ¹H NMR spectrum of compound 12 in CDCl₃

Fig. S15 ¹³C NMR spectrum of compound 12 in CDCl₃

Fig. S16 MALDI-MS spectrum of compound 13

Fig. S18 ¹³C NMR spectrum of compound 13 in CDCl₃

Fig. S19 MALDI-MS spectrum of compound 14

Fig. S20 ¹H NMR spectrum of compound 14 in CDCl₃

Fig. S21 ¹³C NMR spectrum of compound 14 in CDCl₃

Fig. S22 MALDI-MS spectrum of compound 15

Fig. S24 ¹³C NMR spectrum of compound 15 in CDCl₃

Fig. S25 MALDI-MS spectrum of compound 16

Fig. S27 ¹³C NMR spectrum of compound 16 in CDCl₃

Fig. S28 Absorbance spectra of compounds (a) 8, (b) 9 and (c) 10 in different solvents (1 μ M)

Fig. S29 Absorbance spectra of compounds (a) 11, (b) 12 and (c) 13 in different solvents $(1 \mu M)$

Fig. S30 Absorbance spectra of compounds (a) 14, (b) 15 and (c) 16 in different solvents $(1 \mu M)$

Fig. S31 Absorption spectra of compounds (a) 8, (b) 9 and (c) 10 in DCM at different concentrations

Fig. S32 Absorption spectra of compounds (a) 11, (b) 12 and (c) 13 in DCM at different concentrations

Fig. S33 Absorption spectra of compounds (a) 14, (b) 15 and (c) 16 in DCM at different concentrations

Fig. S34 Absorption spectra of compounds (a) 8, (b) 9 and (c) 10 in DMSO at different concentrations

Fig. S35 Absorption spectra of compounds (a) 11, (b) 12 and (c) 13 in DMSO at different

Fig. S36 Absorption spectra of compounds (a) 14, (b) 15 and (c) 16 in DMSO at different concentrations

Fig. S37 Fluorescence spectra of compounds (a) 8, (b) 9 and (c) 10 (0.5 μ M, λ_{ex} :470 nm) in different solvents

Fig. S38 Fluorescence spectra of compounds (a) 11 (λ_{ex} :500 nm), (b) 12 (λ_{ex} :510 nm) and (c) 13 (λ_{ex} :510 nm), in different solvents (0.5 μ M)

Fig. S39 Fluorescence spectra of compounds (a) 14 (λ_{ex} :500 nm), (b) 15 (λ_{ex} :510 nm) and (c) 16 (λ_{ex} :510 nm), in different solvents (0.5 μ M)

Fig. S40 Fluorescence decay profiles of compounds 11-16 in DCM

Fig. S41 Decrease in absorbance spectra of DPBF in the presence of MB in DMSO

Fig. S42 Decrease in absorbance spectra of DPBF in the presence of RB in DMSO

Fig. S43 Decrease in absorbance spectra of DHN in the presence of MB

Fig. S44 Decrease in absorbance spectra of DHN in the presence of RB