Regioselective transformation of 3-phosphoryl benzyne intermediates to diverse phosphorus-substituted arenes

Jing Wang, ${ }^{+}$Zenghui Li, ${ }^{\dagger}$ Gaoqiang You, ${ }^{\ddagger}$ Liang Xut, Pin Gao† and Bin Rao*

†School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
\#School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.

Table of content

1.

General \qquad
\qquad
2. Synthesis of aryne precursors 5 and
6. S1
3. The reaction of aryne precursors 5 and $\mathbf{6}$ with different agents S3
4. Further transformation of 3-phosphoryl benzyne precursors 10 and $\mathbf{8 d}$S10
5. Crystallographic details of 5,8a, and 9f. S17
6. Theoretical study S
18

18
7. NMR
\qquad
S10

Spectra

S21
8.

Reference
S80

1. General

All reactions were performed using standard Schlenk and glovebox (Vigor) techniques under argon atmosphere. All chemicals were purchased from Energy Chemical Inc. THF and toluene are distilled from sodium/benzophenone before use, and acetonitrile and dichloromethane are distilled from calcium hydride before use. Other chemicals are used as commercial products without further purification. Deionized water was purged with Ar overnight before use. Use Bruker 400 MHz or JOEL 400 MHz NMR spectrometer to collect NMR spectra. The external reference for ${ }^{31} \mathrm{P}$ NMR is $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ aqueous solution and the external reference for ${ }^{19} \mathrm{~F}$ NMR is $\mathrm{CF}_{3} \mathrm{COOH}$ in CDCl_{3}. The NMR multiplicity is abbreviated as follows: $\mathrm{s}=$ single peak, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiple, $\mathrm{br}=$ broad. Chemical shifts (δ) are reported in ppm downfield from $\mathrm{Me}_{4} \mathrm{Si}$ ($\delta 0.00$ for ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}) or the solvent peak ($\delta 7.26$ for ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}, \delta 2.50$ for ${ }^{1} \mathrm{H}$ NMR in DMSO-d6, $\delta 77.16$ for ${ }^{13} \mathrm{C}$ NMR in CDCl_{3}, and $\delta 39.52$ for ${ }^{13} \mathrm{C}$ NMR in DMSO-d6) as an internal reference with coupling constants (J) in hertz (Hz). High-resolution mass spectra (HRMS) were collected in ESI positive mode on a Bruker maxis UHR-TOF mass spectrometer. The melting point was measured with Hanon MP-300.

2. Synthesis of aryne precursor 5 and 6

Synthesis of 1

1
To a dichloromethane (45.0 mL) solution of 2-(trimethylsily) phenol ${ }^{[1]}(7.5 \mathrm{~g}, 45.0 \mathrm{mmol}, 1.0$ eq.) was added triethylamine ($12.5 \mathrm{~mL}, 90.1$ $\mathrm{mmol}, 1.2$ eq.) and DMAP ($0.3 \mathrm{~g}, 2.3 \mathrm{mmol}, 0.05$ eq.). Then diphenyl phosphinic chloride ($12.8 \mathrm{~g}, 54.0 \mathrm{mmol}, 1.2$ eq.) was added dropwise at $0{ }^{\circ} \mathrm{C}$. The resulting suspension was stirred at room temperature for 8.0 hours. After that, the resulting reaction mixture was poured into a brine solution $(20.0 \mathrm{~mL})$ and subsequently extracted three times by ethyl acetate (50.0 mL). The combined organic phases were dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified through chromatography on a silica gel plug (eluent: petrol ether/ethyl acetate $=5 / 1$) giving 1 as a white solid $(12.0 \mathrm{~g}, 73 \%$ yield).
M.p. ${ }^{\circ} \mathrm{C}$): 56.9-57.5.
${ }^{1}{ }^{\text {H NMR }}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88$ (dd, J = 12.8, $\left.7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}\right), 7.55(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.50-7.49$ (m, 4H, CH-Ar), 7.41 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), $7.28(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 0.21(\mathrm{~s}, 9 \mathrm{H}$, CH_{3}).
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 135.65,132.61(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.87(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 130.84,130.52$, 129.87 (d, $J=8.4 \mathrm{~Hz}$), 128.85 ($\mathrm{d}, J=13.4 \mathrm{~Hz}$), 123.70, $118.43(\mathrm{~d}, J=4.6 \mathrm{~Hz}),-0.82$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 30.00 .
HRMS (ESI ${ }^{+}$): m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{PSi}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 367.1278$, found: 367.1272.
Synthesis of 2

2-(trimethylsilyl) phenol ($4.6 \mathrm{~g}, 27.5 \mathrm{mmol}, 1.2$ eq.) was dissolved in anhydrous tetrahydrofuran (45.0 mL) and sodium hydride (60%, $1.2 \mathrm{~g}, 30.3 \mathrm{mmol}, 1.3$ eq.) was added at $0{ }^{\circ} \mathrm{C}$. The resulting suspension was stirred at room temperature for 1.0 hour. bis(diethylamino)phosphoryl chloride ${ }^{[2]}\left(6.1 \mathrm{~g}, 23.0 \mathrm{mmol}, 1 \mathrm{eq}\right.$.) was added at $0^{\circ} \mathrm{C}$ and the resulting suspension was stirred at room temperature for 8.0 hours. After that, the resulting reaction mixture was poured into a brine solution (20.0 mL) and subsequently extracted three times with ethyl acetate (50.0 mL). The combined organic phases were dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified through chromatography on a silica gel plug (eluent: petrol ether/ethyl acetate $=$ $5 / 1$) giving 2 as a pale yellow oil ($7.0 \mathrm{~g}, 85 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.36(\mathrm{dt}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 6.99$ (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 3.23-3.00\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.04\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.26\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.55(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 135.22,130.73,128.49(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}), 122.79,117.81(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz})$, 39.32 (d, $J=4.6 \mathrm{~Hz}), 13.84(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}),-0.66$.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.57$.
HRMS (ESI ${ }^{+}$: m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PSi}^{+}$, $[\mathrm{M}+\mathrm{H}]^{+}$: 357.2122, found: 357.2116.

Synthesis of 3

To a solution of $1(7.2 \mathrm{~g}, 19.6 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in anhydrous tetrahydrofuran (40.0 mL) was added LDA (lithium diisopropylamide, 21.6 $\mathrm{mmol}, 1.1 \mathrm{eq}$.) at $-80^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 10 hours. Then the reaction was quenched with aqueous sodium bicarbonate. After that, the resulting reaction mixture was poured into a brine solution (20.0 mL) and extracted three times with ethyl acetate (50.0 mL). The combined organic phases were dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified through chromatography on a silica gel plug (eluent: petrol ether/ethyl acetate =10/1), giving 3 as a white solid ($5.7 \mathrm{~g}, 80 \%$ yield).
M.p. (${ }^{\circ} \mathrm{C}$): $58.8-59.4$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) ठ 11.22 (s, 1H, OH), 7.72 - 7.67 (m, 4H, CH-Ar), $7.60-7.56$ (m, 2H, CH-Ar), $7.53-7.46$ (m,5H, CH-Ar), $7.03-6.97$ (m, 1H, CH-Ar), $6.84-6.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 0.31\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{13} \mathbf{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.62(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}), 140.02,133.34(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 132.54(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}), 132.16(\mathrm{~d}, \mathrm{~J}=10.3$ $\mathrm{Hz}), 131.56,129.44(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}), 128.82(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 118.71(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 110.09(\mathrm{~d}, J=102.3 \mathrm{~Hz}),-0.97$.
${ }^{31} \mathbf{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 40.39$.
HRMS (ESI+): m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{PSi}^{+}$, $[\mathrm{M}+\mathrm{H}]^{+}$: 367.1278 , found: 367.1278.

Synthesis of 4

To a solution of $2(2.3 \mathrm{~g}, 6.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in anhydrous tetrahydrofuran (22.0 \mathrm{~mL}$) was dropwise added s-BuLi ($7.5 \mathrm{~mL}, 9.7 \mathrm{mmol}, 1.5$ eq.) at $-78^{\circ} \mathrm{C}$. The resulting suspension was stirred at room temperature for 2.0 hours. The reaction was quenched with an aqueous sodium bicarbonate solution. After that, the resulting reaction mixture was poured into a brine solution (20.0 mL) and subsequently extracted three times with ethyl acetate (50.0 mL). The combined organic phases were dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified through chromatography on a silica gel plug (eluent: petrol ether/ethyl acetate = $10 / 1$) giving 4 as colorless oil ($1.7 \mathrm{~g}, 74 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.40(\mathrm{dt}, \mathrm{J}=7.2,0.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 6.79-6.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 3.16$ $-3.00\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Et}\right), 1.04\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Et}\right), 0.26\left(\mathrm{t}, \mathrm{J}=3.6 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.23(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 139.10,132.30(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 128.13(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}), 118.09(\mathrm{~d}, \mathrm{~J}=11.6$ $\mathrm{Hz}), 112.57(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 111.09,38.51(\mathrm{~d}, J=147.7 \mathrm{~Hz}), 13.61(\mathrm{~d}, J=2.9 \mathrm{~Hz}),-1.04$.
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 35.71$.
HRMS (ESI+): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PSi}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 357.2122$, found: 357.2116.

To a solution of $3(1.3 \mathrm{~g}, 3.6 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in anhydrous tetrahydrofuran (30.0 mL) was added sodium hydride ($60.0 \%, 171.8 \mathrm{mg}, 4.29$ $\mathrm{mmol}, 1.2 \mathrm{eq}$.) at $0^{\circ} \mathrm{C}$. The resulting suspension was stirred at room temperature for 0.5 hours. Then trifluoromethanesulfonic anhydride ($0.8 \mathrm{~mL}, 4.7 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was slowly added at $0^{\circ} \mathrm{C}$ and the resulting suspension was stirred at room temperature for 2.0 hours. The reaction was quenched with an aqueous sodium bicarbonate solution. After that, the resulting reaction mixture was poured into a brine solution (20.0 mL) and subsequently extracted three times with ethyl acetate (50.0 mL). The combined organic phases were dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified through chromatography on a silica gel plug (eluent: petrol ether/ethyl acetate $=5 / 1$) giving 5 as a white solid ($1.3 \mathrm{~g}, 73 \%$ yield).
M.p. $\left({ }^{\circ} \mathrm{C}\right)$: 127.5-128.6.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.67-7.62(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.54$ (td, J=7.2, 1.6 Hz, 2H, CH-Ar), $7.47-$ 7.43 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 7.34 (td, $J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.26-7.21$ (m, 1H, CH-Ar), 0.40 (s, 9H, CH C_{3}).
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.16,140.87(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}), 137.82(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}), 136.91(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}), 133.43,132.36$, $131.85(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.75(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 128.27(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 127.14,126.81(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 126.18,119.80,116.61,0.27$.
${ }^{31} \mathbf{P}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.97$.
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.96$.
HRMS (ESI+): m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{PSSi}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 499.0771$, found: 499.0765.

Synthesis of 6

To a solution of $4(2.5 \mathrm{~g}, 7.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in anhydrous tetrahydrofuran (30.0 mL) was added $\mathrm{n}-\mathrm{BuLi}(5.3 \mathrm{~mL}, 8.4 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) at$ $-78{ }^{\circ} \mathrm{C}$. The resulting suspension was stirred at room temperature for 0.5 hours. Then trifluoromethane sulfonic anhydride ($1.8 \mathrm{~mL}, 10.5$ mmol, 1.5 eq.) was slowly added at $0^{\circ} \mathrm{C}$ and the resulting suspension was stirred at room temperature for 2.0 hours. The reaction was quenched with an aqueous sodium bicarbonate solution. After that, the resulting reaction mixture was poured into a brine solution (20.0 mL) and subsequently extracted three times with ethyl acetate (50.0 mL). The combined organic phases were dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified through chromatography on a silica gel plug (eluent: petrol ether/ethyl acetate $=5 / 1$) giving 6 as pale yellow oil ($2.4 \mathrm{~g}, 72 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.37(\mathrm{td}, \mathrm{J}=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 3.17-2.95(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}$), $1.02(\mathrm{t}, \mathrm{J}=$ $\left.7.2 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.37\left(\mathrm{t}, \mathrm{J}=3.2 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.99,139.96,137.24(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}), 135.76(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}), 128.44,127.03(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz})$, $123.28\left(q, J_{C-F}=319.2 \mathrm{~Hz}\right), 38.05(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 13.11(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 0.47$.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.42$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.88$.
HRMS (ESI+): m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{PSSi}^{+}$, $[\mathrm{M}+\mathrm{H}]^{+}$: 489.1615, found: 489.1606.

3. The reactions of aryne precursor 5 and 6 with various trapping agents.

General synthetic procedure:

3-phosphoryl benzyne precursor (5 or $\mathbf{6}$) (0.1 mmol), cesium fluoride ($0.3 \mathrm{mmol}, 3.0 \mathrm{eq}$.) and trapping agent ($\mathbf{7 a} \mathbf{- 7 j}$, $0.2 \mathrm{mmol}, 2.0$ eq.) were placed in a dried Schlenk flask. Then 1 mL of acetonitrile (0.1 M) was added with a syringe under nitrogen gas. The resulting mixture was stirred at room temperature for 12 hours. After that, the volatile was removed under vacuum, and the residue was purified by column chromatography on silica gel to afford the pure product.

8a
According to the general synthetic procedure, 8a was obtained as a white solid ($25.6 \mathrm{mg}, 67 \%$ yield).
M.p. $\left({ }^{\circ} \mathbf{C}\right): 97.4-98.0$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.66$ (m, 4H, CH-Ar), $7.54-7.52$ (m, 2H, CH-Ar), $7.47-7.44$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 7.31 - 7.25 (m, 2H, CH-Ar), 7.16 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), $7.06-7.01$ (m, $3 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 6.94 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 5.84 (s, 1H, NH), 2.29 (s, 3H, CH_{3}).
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.53(\mathrm{~d}, J=14.1 \mathrm{~Hz}), 138.08,132.89,132.05,131.86,131.12(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 130.86(\mathrm{~d}, J=2.2$ $\mathrm{Hz}), 130.80,128.89,128.46(\mathrm{~d}, J=13.9 \mathrm{~Hz}), 127.49(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 122.15(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 118.56,117.81(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 19.70$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.56$.
HRMS (ESI'): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NOP}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 384.1512$, found: 384.1512.

According to the general synthetic procedure, 8b was obtained as a white solid ($26.8 \mathrm{mg}, 70 \%$ yield).
M.p. $\left({ }^{\circ} \mathrm{C}\right)$: $121.7-123.2$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\quad 7.70-7.64$ (m, 4H, CH-Ar), $7.55-7.50$ (m, 2H, CH-Ar), 7.46-7.42 (m, 4H, CH-Ar), 7.32-7.23 (m, 4H, CH-Ar), 7.07 - 6.99 (m, 5H, CH-Ar), 3.28 (s, 3H, CH3).
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס $149.23(\mathrm{~d}, J=13.8 \mathrm{~Hz}), 148.23,133.68,133.22,132.65,132.21(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 131.94(\mathrm{~d}, J=2.5$ $\mathrm{Hz}), 129.58,129.18(\mathrm{~d}, J=14.0 \mathrm{~Hz}), 128.57(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 123.45(\mathrm{~d}, J=25.7 \mathrm{~Hz}), 123.15(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 121.21(\mathrm{~d}, J=2.4 \mathrm{~Hz})$, 120.56 (d, J=11.0 Hz), 40.27 .
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.51$.
HRMS (ESI'): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NOP}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 384.1512$, found: 384.1516.

According to the general synthetic procedure, $8 \mathbf{c}$ was obtained as a yellow oil ($22.1 \mathrm{mg}, 61 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.62(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.46-7.42(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.39-7.36$ (m, 1H, CH-Ar), $7.32-7.27$ (m, 1H, CH-Ar), 7.05 (dd, J = $8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), $6.95-6.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 3.81-3.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.16$ - 3.13 (m, 2H, CH ${ }_{2}$).
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.34(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}), 133.70,133.21,132.66,132.19$ (d, J=9.9 Hz), $131.99(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz})$,
129.33 (d, $J=14.1 \mathrm{~Hz}), 128.59(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 123.19(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 118.69,66.79,48.77$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 30.44 .
HRMS (ESI+): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{P}^{+}:[\mathrm{M}+\mathrm{H}]^{+}: 364.1461$, found: 364.1462.

According to the general synthetic procedure on $0.1 \mathrm{mmol}, 8 \mathbf{d}$ was obtained as a white solid ($32.1 \mathrm{mg}, 80 \%$ yield).
Synthetic procedure on 1.0 mmol scale:
Cesium fluoride ($4 \mathrm{mmol}, 4.0$ eq., 0.63 g), p-toluenethiol ($2 \mathrm{mmol}, 2.0$ eq., 0.25 g), and dry acetonitrile ($8 \mathrm{~mL}, 0.1 \mathrm{M}$) were placed in a dried Schlenk flask (50 mL) under nitrogen gas. The mixture was stirred at room temperature for 0.5 hours under nitrogen gas. Then 3-phosphoryl benzyne precursor 5 ($1 \mathrm{mmol}, 0.50 \mathrm{~g}$) in 2 mL of acetonitrile was added with a syringe. The resulting mixture was stirred at room temperature for 18 hours. After that, the volatile was removed under vacuum, and the residue was purified by column chromatography on silica gel to afford the pure product $8 \mathbf{d}(0.74 \mathrm{mmol}, 0.28 \mathrm{~g})$ in 74% isolated yield.
M.p. $\left({ }^{\circ} \mathrm{C}\right): 113.3-115.9$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.56$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), $7.51-7.37$ (m, 8H, CH-Ar), $7.29-7.28$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), $7.25-7.23$ (m, 2H, CH-Ar), 7.07 (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 2.30 (s, 3H, CH3).
${ }^{13} \mathbf{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.48(\mathrm{~d}, J=13.2 \mathrm{~Hz}$), $138.61,133.68(\mathrm{~d}, J=101.5 \mathrm{~Hz}), 132.84(\mathrm{~d}, J=141.4 \mathrm{~Hz}), 132.72,132.03$, $131.67,131.64(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 131.51,130.42,129.45(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 129.24(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 129.13,128.59(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 21.32$. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 29.50.
HRMS (ESI'): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{OPS}^{+}$: $[\mathrm{M}+\mathrm{H}]^{+}: 401.1123$, found: 401.1121.

According to the general synthetic procedure, 8e was obtained as light yellow oil ($22.3 \mathrm{mg}, 58 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.63$ (m, 5H, CH-Ar), $7.56-7.52$ (m, 2H, CH-Ar), $7.50-7.44$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), $7.38-7.35$ (m, 1H, CH-Ar), $7.33-7.30$ (m, 1H, CH-Ar), 7.11 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 6.87 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 2.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.27(\mathrm{~d}, J=15.1 \mathrm{~Hz}), 153.86,133.77,132.85(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 130.54,130.15(\mathrm{~d}, J=14.0 \mathrm{~Hz})$, $128.84,128.71(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 126.37(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 121.67(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 121.39,119.49,20.87$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.57$.
HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{P}^{+},\left[\mathrm{M}^{+}+\right]^{+}, 385.1352$, found: 385.1357.

According to the general synthetic procedure, $8 \mathbf{f}$ was obtained as a white solid ($24.4 \mathrm{mg}, 50 \%$ yield).
M.p. $\left({ }^{\circ} \mathrm{C}\right): 58.8-59.2$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18-8.13$ (m, 1H, CH-Ar), $7.95-7.90(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.54-7.38$ ($\mathrm{m}, 10 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 7.14 ($\mathrm{d}, \mathrm{J}=8.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 5.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.33(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 133.18,132.79(\mathrm{~d}, \mathrm{~J}=2.0), 132.70,132.29(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}), 132.17,132.10$ ($\mathrm{d}, J=2.8 \mathrm{~Hz}$), 131.71, $130.66(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 129.50,128.39(\mathrm{~d}, J=12.7 \mathrm{~Hz}), 127.29(\mathrm{~d}, J=11.1 \mathrm{~Hz}), 125.34,124.35,122.86$, $113.89(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}), 51.84$.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.88$.
HRMS (ESI ${ }^{+}$: m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{OP}^{+},\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}: 488.0522$, found: $488.0519,\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}: 490.0502$, found 490.0496 .

According to the general synthetic procedure, $8 \mathbf{g}$ was obtained as a white solid ($29.3 \mathrm{mg}, 55 \%$ yield).
M.p. $\left({ }^{\circ} \mathrm{C}\right): 81.7-82.6$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.47$ (m, 3H, CH-Ar), $7.44-7.39$ (m, 3H, CH-Ar), 7.21 - 7.04 (m, 6H, CH-Ar), $6.94-6.88$ (m, 4H, CH-Ar), 6.59 (ddd, $J=12.8,8.40 .8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 6.28$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 1.18 (s, $9 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.40(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 141.25,133.76(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}), 132.98(\mathrm{~d}, \mathrm{~J}=104.3 \mathrm{~Hz}), 132.08(\mathrm{~d}, \mathrm{~J}=$ $10.0 \mathrm{~Hz}), 131.97(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.08(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 130.45(\mathrm{~d}, J=104.0 \mathrm{~Hz}), 130.27(\mathrm{~d}, J=104.0 \mathrm{~Hz}), 128.65(\mathrm{~d}, J=13.1 \mathrm{~Hz})$, $128.45(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 128.12(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 127.34,125.23(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 121.34,110.61(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 65.36(\mathrm{~d}, J=1.4 \mathrm{~Hz})$, 61.88, 25.33.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.90$.
HRMS (ESI ${ }^{+}$: m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{BrNO}_{2} \mathrm{P}^{+},\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}: 532.1036$, found: 532.1034, $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}: 534.1016$, found 534.1010.

According to the general synthetic procedure, 8 h was obtained as colorless oil. ($28.1 \mathrm{mg}, 76 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ - 7.66 (m, 2H, CH-Ar), $7.58-7.53(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.50-7.43$ (m, 4H, CH-Ar), $7.26-7.23(\mathrm{~m}, 1 \mathrm{H}$, CH-Ar), 6.89 (td, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 6.82$ (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 6.72$ (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 6.55 (ddd, $J=12.8,8$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 155.24(\mathrm{~d}, J=9.3 \mathrm{~Hz}), 147.57,146.73,133.98(\mathrm{~d}, \mathrm{~J}=22.2 \mathrm{~Hz}), 132.94(\mathrm{~d}, J$ $=23.4 \mathrm{~Hz}), 132.28(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 128.56,128.80(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 128.63,126.57(\mathrm{~d}, J=102.5 \mathrm{~Hz}), 124.32(\mathrm{~d}, J=11.1 \mathrm{~Hz}), 121.27$ (d, $J=2.0 \mathrm{~Hz}$), $91.78(\mathrm{~d}, J=1.3 \mathrm{~Hz}$), 87.60, 18.17, 15.21.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 30.84 .
HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{P}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 373.1352$, found: 373.1350.

According to the general synthetic procedure, $\mathbf{8 i}$ was obtained as colorless oil ($23.0 \mathrm{mg}, 52 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\overline{\mathrm{C}} 7.70-7.65$ (m, 4H, CH-Ar), $7.59-7.54$ (m, 2H, CH-Ar), $7.50-7.45(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.39(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}$, 1H, CH), $7.0-6.73$ (br, 4H, CH), 6.91 (br, 2H), 1.25 (s, $9 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.70,150.01$ (br), 143.60 (br), 132.15 (br), 142.94 (br), 132.22, 132.15, 132.05, 128.87, 128.77, $128.75,128.65,127.73$ (d, $J=11.0 \mathrm{~Hz}$), 124.91 (d, $J=11.0 \mathrm{~Hz}$), 123.96, $80.79,66.27$ (br), 65.31(br), 28.12.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.75$.
HRMS (ESI ${ }^{+}$: m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{P}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 446.1880$, found: 446.1877.

According to the general synthetic procedure, $\mathbf{8 j}$ was obtained as a yellow solid ($17.6 \mathrm{mg}, 45.0 \%$ yield).
M.p. $\left({ }^{\circ} \mathrm{C}\right)$: 92.9 - 93.8.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.73$ ($5 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), $7.50-7.45$ (m, 3H, CH-Ar), $7.44-7.38$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 7.09 (d, J = 8.0 Hz , 1H, CH-Ar), $3.12-3.09\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.58$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.98(\mathrm{~d}, J=4.0 \mathrm{~Hz}$), $146.43(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 133.62,132.76$ (d, $J=10.4 \mathrm{~Hz}), 132.59(\mathrm{~d}, J=7.5$ Hz), $131.50(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}), 130.55(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}), 128.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 127.91(\mathrm{~d}, J=12.6 \mathrm{~Hz}), 121.62,57.30,47.69,40.27$, 33.20.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 33.87
HRMS (ESI'): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 391.1570$, found 391.1565 .

According to the general synthetic procedure, 9a was obtained as colorless oil ($22.2 \mathrm{mg}, 60 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 7.39 (d, J = $13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), $7.24-7.06$ (m, 5H, CH-Ar), 6.99 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 5.83 (s br, $1 \mathrm{H}, \mathrm{NH}$), $3.10-3.02\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right.$), 2.29 (s, 3H, CH C_{3}, $1.03\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.28(\mathrm{~d}, J=15.3 \mathrm{~Hz}), 139.89,134.33(\mathrm{~d}, J=153.0 \mathrm{~Hz}), 131.43,129.96,129.17(\mathrm{~d}, J=14.8 \mathrm{~Hz})$, 129.17 (d, $J=14.8 \mathrm{~Hz}), 123.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 120.42(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 119.34,118.39(\mathrm{~d}, J=1.9), 38.42(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 20.80$, 13.78 (d, $J=2.6 \mathrm{~Hz}$).
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 29.10 .
HRMS (ESI ${ }^{+}$: m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{OP}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 374.236$, found: 374.239.

According to the general synthetic procedure, 9b and 9b' were isolated in 53% (19.8 mg , light yellow oil) and 33% (12.3 mg , light yellow oil), respectively.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathbf{\delta} 7.33$ (d, J = $\left.14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}\right), 7.31$ - 7.25 (m, 4H, CH-Ar), $7.14-6.93$ (m, 4H, CH-Ar), 3.32 (s, 3H, CH_{3}), 3.05 (dq, $J=14.6,7.3 \mathrm{~Hz}, 8 \mathrm{H}$), $1.02(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.05(\mathrm{~d}, J=15.2 \mathrm{~Hz}$), $148.80,134.06$ ($\mathrm{d}, \mathrm{J}=152.9 \mathrm{~Hz}$), 129.44, 129.11 (d, $J=14.9 \mathrm{~Hz}), 123.91$ (d, $J=8.6 \mathrm{~Hz}$), 122.46, $122.25(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 121.92,121.78(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 40.37,38.43(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 13.78(\mathrm{~d}, J=2.4 \mathrm{~Hz})$. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.57$.
HRMS (ESI'): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{OP}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 374.2356$, found: 374.2354 .

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75$ (ddd, $J=13.1,7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), $7.52-7.43$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), $7.33-7.25$ (m, 2H, CH-Ar), 7.15 $-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 6.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.12-2.80(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}$) , $1.00(\mathrm{t}, J$ $\left.=7.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.94(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 150.24,135.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 132.84,131.57(\mathrm{~d}, J=9.3 \mathrm{~Hz}), 130.06,128.59$, 126.16 ($\mathrm{d}, J=22.1 \mathrm{~Hz}$), 116.77, 113.88, 41.49, 38.84 ($\mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}$), 14.04
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.88$.
HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{OP}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 374.2356$, found: 374.2351 .

According to the general synthetic procedure, 9c was obtained as light yellow oil ($25.4 \mathrm{mg}, 72 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (dd, $J=13.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), $7.29-7.24$ (m, 1H, CH-Ar), 7.14 (dd, J=11.2, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-$ Ar), 6.95 (dd, $J=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 3.82\left(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.16\left(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.08-3.00(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}-\mathrm{Et})$, 1.01 (t, $J=7.2 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}$-Et).
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 151.18(\mathrm{~d}, J=14.7 \mathrm{~Hz}), 134.15(\mathrm{~d}, J=152.1 \mathrm{~Hz}), 128.98(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}), 122.72(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz})$, $119.33(\mathrm{~d}, \mathrm{~J}=10.6 \mathrm{~Hz}), 117.90(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 66.91,49.12,38.39(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 13.77(\mathrm{~d}, J=2.7 \mathrm{~Hz})$.
${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}) $\delta 29.36$.
HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 354.2305$, found: 354.2301 .

According to the general synthetic procedure, 9d was obtained as a white solid ($35.9 \mathrm{mg}, 90 \%$ yield).
M.p. $\left({ }^{\circ} \mathrm{C}\right)$: $74.3-75.6$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-7.57$ (m, 1H, CH-Ar), 7.49 (dd, J=12.4, 1.2 Hz, 1H, CH-Ar), $7.31-7.29$ (m, 4H, CH-Ar), 7.13 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 3.02-2.94\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Et}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.97\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right.$-Et).
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.29,138.18(\mathrm{~d}, J=14.5 \mathrm{~Hz}), 134.41(\mathrm{~d}, J=152.0 \mathrm{~Hz}), 133.17,131.91(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}), 131.48(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}), 130.36,130.27,129.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 129.11(\mathrm{~d}, J=13.7 \mathrm{~Hz}), 38.36(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 21.23,13.65(J=2.6)$.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 28.22.
HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{OPS}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 391.1967$, found: 391.1969.

According to the general synthetic procedure, 9 e was obtained as colorless oil ($21.3 \mathrm{mg}, 57 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}\right), 7.36-7.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}\right), 7.11\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{C}_{3}-\mathrm{Ar}\right), 7.04(\mathrm{~d}, J=$ $\left.8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}\right), 6.87\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}\right), 3.13-2.94\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.01-0.98\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.77(\mathrm{~d}, J=16.7 \mathrm{~Hz}) 154.54,135.54(\mathrm{~d}, J=153.2 \mathrm{~Hz}), 133.30,130.42,129.81(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz})$, $126.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 121.47(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 120.92,119.19,38.37(\mathrm{~d}, J=3.9 \mathrm{~Hz}) 20.83,13.73(\mathrm{~d}, J=2.7 \mathrm{~Hz})$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.02$.
HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 375.2196$, found: 375.2198 .

According to the general synthetic procedure, 9 f and $9 f^{\prime}$ were isolated in 58% (27.7 mg , colorless solid) and 10% (5.0 mg , light yellow oil), respectively.

SUPPORTING INFORMATION

M.p. $\left({ }^{\circ} \mathrm{C}\right): 43.0-43.4$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10$ (ddd, $J=13.6,6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), $7.48-7.44$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 7.13 (d, J=8.4 Hz, 2H,CHAr), 5.78 (s, 2H, CH $)_{2}$), $3.28-3.11$ (m, $8 \mathrm{H}, \mathrm{CH}_{2}$-Et), $0.99\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Et}\right)$.
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.46(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 133.62,132.57(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}), 132.36,131.67(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 129.36$, $127.57(\mathrm{~d}, J=12.7 \mathrm{~Hz}), 126.57(\mathrm{~d}, J=150.0 \mathrm{~Hz}), 122.81,112.53(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 51.75,38.34(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 13.69(\mathrm{~d}, J=2.5 \mathrm{~Hz})$. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.69$.
HRMS (ESI ${ }^{+}$: m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{BrN}_{5} \mathrm{OP}^{+},\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}: 478.1366$, found: $478.1362 .\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}: 480.1346$, found 480.1348 .

${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26-8.23$ (m, 1H, CH-Ar), $7.70-7.64$ (m, 1H, CH-Ar), $7.42-7.38$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 7.16 ($\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 6.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.11-2.96\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Et}\right), 1.02\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right.$-Et).
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 146.86,136.19,133.32(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$), 131.54, 129.56, $124.24(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}), 123.08,122.95$, $121.56,117.61(\mathrm{~d}, J=157.0 \mathrm{~Hz}), 53.46(\mathrm{~d}, J=63.7 \mathrm{~Hz}), 39.22(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 13.94(\mathrm{~d}, J=2.0 \mathrm{~Hz})$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.35$.

According to the general synthetic procedure, 9 h was obtained as a white solid ($22.8 \mathrm{mg}, 63 \%$ yield).
M.p. $\left({ }^{\circ} \mathrm{C}\right): 83.8-84.3$.
 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 3.15-2.99\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Et}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.06$ (dt, J=36.0, $7.2 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}$-Et).
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.47(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 154.82(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 147.80,146.39,127.70(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 126.41(\mathrm{~d}$, $J=156.9 \mathrm{~Hz}$), $124.07(\mathrm{~d}, J=11.5 \mathrm{~Hz}), 120.33(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 92.06,87.24,39.19(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 38.86(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 17.68,15.25$, 14.16, 13.57.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 28.45
HRMS (ESI ${ }^{+}$: m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}^{+}$: $[\mathrm{M}+\mathrm{H}]^{+}, 363.2196$, found: 363.2191.

According to the general synthetic procedure, 9i was obtained as light yellow oil ($23.4 \mathrm{mg}, 54 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 6.96-6.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 6.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{C}=\mathrm{C}), 5.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-$

${ }^{13} \mathbf{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.76,154.22(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 149.51(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 143.83,143.18,131.02,128.91,126.93$, 124.37 ($\mathrm{d}, J=10.9 \mathrm{~Hz}$), 122.92, 80.54, 66.77, 65.47, 38.47, 28.26, 13.90.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 27.58.
HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 434.2567$, found: 434.2570.

According to the general synthetic procedure, 9 j was obtained as yellow oil ($28.4 \mathrm{mg}, 75 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 6.98(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 3.16-3.07\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{CH}_{2}\right.$ and $\mathrm{N}-\mathrm{CH}$), 2.81 $-2.77\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{3}\right), 1.04\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.74,146.38(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}), 135.21(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 134.24(\mathrm{~d}, \mathrm{~J}=151.1 \mathrm{~Hz}), 129.52,126.98$, 120.52 ($\mathrm{d}, J=54.3 \mathrm{~Hz}$), 56.81, 47.88, 38.82, 33.69, 29.83, 13.85.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.30$.
HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}^{+},[\mathrm{M}+\mathrm{H}]^{+}$381.2414, found: 381.2411.

After 5 days in the solvent of CDCl_{3} under air
Compound 6

\qquad

Figure S 1 , Stacked ${ }^{1} \mathrm{H}$ NMR spectra of compound 6 in CDCl_{3}.

SUPPORTING INFORMATION

4. Further transformation of 3-phosphoryl benzyne precursors 10 and 8d

10 99\%
Scheme S1, Synthesis of 3-phosphoryl benzyne precursor 10.

To a dichloromethane (15.0 mL) solution of 4-methyl-2-(trimethylsilyl)phenol ($2.70 \mathrm{~g}, 15.0 \mathrm{mmol}, 1.0$ eq.) was added triethylamine (4.2 $\mathrm{mL}, 30.0 \mathrm{mmol}, 2.0$ eq.) and DMAP ($0.37 \mathrm{~g}, 0.3 \mathrm{mmol}, 0.2$ eq.). Then diphenyl phosphinic chloride ($3.97 \mathrm{~g}, 18.0 \mathrm{mmol}, 1.2$ eq.) was added dropwise at $0^{\circ} \mathrm{C}$. The resulting suspension was stirred at room temperature for 8.0 hours. After that, the resulting reaction mixture was poured into a brine solution (20.0 mL) and subsequently extracted three times by ethyl acetate (30.0 mL). The combined organic phases were dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified through chromatography on a silica gel plug (eluent: petrol ether/ethyl acetate $=5 / 1$), giving $\mathbf{S 1}$ as a white solid ($4.0 \mathrm{~g}, 70 \%$ yield).
M.p. $\left({ }^{\circ} \mathrm{C}\right)$: $56.2-56.1$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.84(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.49-7.44(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.17(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 6.96 (dd, J = 8.4, $2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 2.25 (s, 3H, CH CH_{3}), 0.20 (s, $9 \mathrm{H}, \mathrm{Si}-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 136.11,132.51(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 132.41(\mathrm{~d}, J=88.7 \mathrm{~Hz}), 131.81(\mathrm{~d}, J=10.5$ Hz), 131.23, $130.62,129.45$ (d, $J=8.6 \mathrm{~Hz}), 128.73(\mathrm{~d}, J=13.5 \mathrm{~Hz}), 118.11$ (d, $J=4.4 \mathrm{~Hz}), 20.76,-0.77$.
${ }^{31}$ P NMR (162 MHz ,) ठ 30.38.
HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{PSi}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 380.1361$, found: 380.1360.

To a solution of $\mathbf{S 1}(2.28 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.0$ eq.) in anhydrous tetrahydrofuran $(30.0 \mathrm{~mL})$ was added LDA (lithium diisopropylamide, 7.2 $\mathrm{mmol}, 1.2$ eq.) at $-80^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 10 hours. Then the reaction was quenched with aqueous sodium bicarbonate. After that, the resulting reaction mixture was poured into a brine solution $(20.0 \mathrm{~mL})$ and extracted three times with ethyl acetate (20.0 mL). The combined organic phases were dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified through chromatography on a silica gel plug (eluent: petrol ether/ethyl acetate $=10 / 1$), giving $\mathbf{S 2}$ as an orangered solid ($1.42 \mathrm{~g}, 62 \%$ yield).
M.p. $\left({ }^{\circ} \mathrm{C}\right)$: $58.6-59.8$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.11$ (s, 1H, OH), $7.77-7.68$ (m, 4H, Ar-CH), $7.59-7.53$ (m, 4H, Ar-CH), $7.50-7.45$ (m, 4H, Ar-CH), 7.35 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 6.81 (dd, $J=13.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), $2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.34\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס $166.63(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 141.09,132.97(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 132.70,132.55(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 132.13(\mathrm{~d}, J$ $=10.3 \mathrm{~Hz}), 131.66,129.25(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}), 128.79(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}), 127.53(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}), 109.16(\mathrm{~d}, \mathrm{~J}=102.6 \mathrm{~Hz}), 20.74,-0.85$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 40.40$.
HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{PSi},[\mathrm{M}+\mathrm{H}]^{+}: 478.1366$, found: 478.1365 .

To a solution of $\mathbf{S 2}$ ($0.76 \mathrm{~g}, 2.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in anhydrous ether (15.0 mL) was added sodium hydride ($60.0 \%, 96.0 \mathrm{mg}, 2.4 \mathrm{mmol}$, 1.2 eq.) at $0^{\circ} \mathrm{C}$. The resulting suspension was stirred at room temperature for 0.5 hours. Then trifluoromethanesulfonic anhydride (0.4 $\mathrm{mL}, 2.4 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was slowly added at $0^{\circ} \mathrm{C}$ and the resulting suspension was stirred at room temperature for 2.0 hours. The reaction was quenched with an aqueous sodium bicarbonate solution. After that, the resulting reaction mixture was poured into a brine solution (20.0 mL) and subsequently extracted three times with ethyl acetate $(20.0 \mathrm{~mL})$. The combined organic phases were dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified through chromatography on a silica gel plug (eluent: petrol ether/ethyl acetate $=5 / 1$) giving 10 as a white solid ($1.02 \mathrm{~g}, 9992 \% \%$ yield).
M.p. (${ }^{\circ} \mathrm{C}$): 126.7 - 128.3 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.60(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.50-7.46(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.43-7.38(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 6.98$ (dd, $\mathrm{J}=14.1$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 2.23$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $0.36\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.35,141.62,137.50,137.40,136.98(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 133.10(\mathrm{~d}, J=107.5 \mathrm{~Hz}), 132.02(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}), 131.92(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 128.44(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 126.30(\mathrm{~d}, J=96.3 \mathrm{~Hz}), 120.00,116.81,20.94,0.47$.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.62$.
HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{PSSi},[\mathrm{M}+\mathrm{H}]^{+}: 512.0854$, found: 512.0850.

According to the general synthetic procedure on 0.1 mmol scale, 11 was obtained as a white solid ($36.4 \mathrm{mg}, 92 \%$ yield).
M.p. $\left({ }^{\circ} \mathrm{C}\right)$: 96.8 - 97.7 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\overline{\mathrm{C}} 7.72$ - 7.63 (m, 4H, CH-Ar), $7.55-7.51$ (m, 2H, CH-Ar), 7.47 - 7.42 (m, 4H, CH-Ar), 7.04 - 6.91 (m, 7H, $\mathrm{CH}-\mathrm{Ar}$), 2.28 (s, 3H, CH3)), 2.26 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.37(\mathrm{~d}, J=15.3 \mathrm{~Hz}), 139.73(\mathrm{~d}, J=13.7 \mathrm{~Hz}), 139.38,133.71,133.25,132.19(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz})$, $131.92(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 131.70,129.97,128.52(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 124.03(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 119.84,119.57,117.14(\mathrm{~d}, J=11.5 \mathrm{~Hz}), 21.65$, 20.81.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.44$.
HRMS (ESI+): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NOP}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 398.1669$, found: 398.1665 .

SUPPORTING INFORMATION

R = Cy S7 Not obtained
${ }^{t}$ Bu S8 Not obtained

S9 62\%

Scheme S2, Attempt to synthesize 3-phosphorus functionalized benzyne precursor $\mathbf{S 7}$ and $\mathbf{S 8}$.

$R=C y, S 3$
${ }^{t} \mathrm{Bu}, \mathrm{S} 4$
To a dichloromethane (15.0 mL) solution of 2-(trimethylsily) phenol ($2.49 \mathrm{~g}, 15.0 \mathrm{mmol}, 1.0$ eq.) was added triethylamine ($2.5 \mathrm{~mL}, 30.0$ mmol, 1.2 eq.) and DMAP ($0.37 \mathrm{~g}, 0.3 \mathrm{mmol}, 0.2$ eq.). Then $\mathrm{R}_{2} \mathrm{POCl}\left(\mathrm{R}=\mathrm{Cy}\right.$; $\left.{ }^{t} \mathrm{Bu}\right)\left(18.0 \mathrm{mmol}, 1.2 \mathrm{eq}\right.$.) was added dropwise at $0^{\circ} \mathrm{C}$. The resulting suspension was stirred at room temperature for 8.0 hours. After that, the resulting reaction mixture was poured into brine solution (20.0 mL) and subsequently extracted three times by ethyl acetate $(30.0 \mathrm{~mL})$. The combined organic phases were dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified through chromatography on a silica gel plug (eluent: petrol ether/ethyl acetate = 5/1), giving $\mathbf{S 3}$ (colorless oil, $3.69 \mathrm{~g}, 65 \%$ yield) and $\mathbf{S 4}$ (colorless oil, $3.92 \mathrm{~g}, 65 \%$ yield) respectively.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87$ (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), $7.37-7.32$ (m, 1H, CH-Ar), $7.27-7.23$ (m, 1H, CH-Ar), 7.02 (td, $J=$ $7.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 2.04-1.77(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Cy}-\mathrm{H}), 1.68(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Cy}-\mathrm{H}), 1.55-1.43(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Cy}-\mathrm{H}), 1.22-1.17(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Cy}-\mathrm{H}), 1.06(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Cy}-\mathrm{H}$), $0.29\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.31(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 135.42,131.00,128.24(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 123.04,118.67(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 39.36$ (d, $J=4.6 \mathrm{~Hz}$), $37.55,36.68,26.35(\mathrm{~d}, J=14.0 \mathrm{~Hz}), 25.73(\mathrm{~d}, J=30.1 \mathrm{~Hz}), 25.55,25.51,13.87(\mathrm{~d}, J=2.2 \mathrm{~Hz}),-0.32$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 60.32$.
HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{PSi}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 378.2144$, found: 378.2147 .

${ }^{1} \mathrm{H}$ NMR (400 MHz ,) ס 8.22 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 7.37 (dd, $J=7.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 7.24 (ddd, $J=8.9,5.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}$, ArCH), 6.99 (td, $J=7.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 1.32 (d, $\left.J=14.8 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 0.32\left(\mathrm{~s}, \mathrm{Si}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}(100 \mathrm{MHz}$,) $\delta 160.78$ (d, $J=9.5 \mathrm{~Hz}), 135.58,131.00,127.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 122.78,119.36,37.91$ ($\mathrm{d}, J=80.5 \mathrm{~Hz}$), 26.88, 0.27.
${ }^{31}$ P NMR (162 MHz,) $\delta 69.43$.
HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{OPSi}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 327.1904$, found: 327.1914.

$$
\begin{array}{r}
\mathrm{R}=\underset{\mathrm{t}}{\mathrm{Cy}, \mathrm{~S}, \mathrm{~S}} \mathbf{5}
\end{array}
$$

To a solution of $\mathbf{S 3}$ or $\mathbf{S 4}$ ($3.0 \mathrm{mmol}, 1.0$ eq.) in anhydrous tetrahydrofuran (10.0 mL) was added LDA (lithium diisopropylamide, 6.6 mmol, 2.2 eq.) at $-80^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 10 hours. Then the reaction was quenched with aqueous sodium bicarbonate. After that, the resulting reaction mixture was poured into brine solution (10.0 mL) and extracted three times with ethyl acetate (30.0 mL). The combined organic phases were dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified through chromatography on a silica gel plug (eluent: petrol ether/ethyl acetate =10/1), giving S5 (white solid, $0.68 \mathrm{~g}, 60 \%$ yield) and $\mathbf{S 6}$ (white solid, $0.70 \mathrm{~g}, 71 \%$ yield) respectively..

M.p. $\left({ }^{\circ} \mathrm{C}\right): 53.6-54.8$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.48-7.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.00-6.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 6.82(\mathrm{td}, \mathrm{J}=7.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, CH-Ar), $2.06-1.97(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Cy}-H), 1.86-1.77(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Cy}-H), 1.69(\mathrm{~d}, \mathrm{~J}=10.8,4 \mathrm{H}, \mathrm{Cy}-H), 1.41-1.11(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Cy}-\mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H}$, CH_{3}).
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.05,139.27,130.85(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 128.85(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 118.14(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}), 106.90(\mathrm{~d}, J$ $=85.2 \mathrm{~Hz}$), $36.12,35.46,26.47,26.36(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}), 26.24,25.81,25.33(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 24.13(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}),-1.06$.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 61.07$.
HRMS (ESI ${ }^{+}$: m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{PSi}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 379.2217$, found: 379.2213.

M.p. $\left({ }^{\circ} \mathrm{C}\right)$: $55.7-56.1$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.44(\mathrm{dt}, \mathrm{J}=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 6.77(\mathrm{td}, \mathrm{J}=7.2$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 1.31 (d, J = $14.0 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}$), $0.26\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.13,138.97,131.88(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 129.04(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 117.24(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}), 107.87(\mathrm{~d}, J$ $=79.2 \mathrm{~Hz}$), 37.11 (d, $J=58.1 \mathrm{~Hz}$), 26.75 (s), -1.03 (s).
${ }^{31} \mathbf{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 68.625$.
HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{PSi}^{+}$, $[\mathrm{M}+\mathrm{H}]^{+}$: 327.1904 , found: 327.1908 .
Various methods had been tried to get triflation products $\mathbf{S 7}$ and $\mathbf{S 8}$ from substrates $\mathbf{S 5}$ and $\mathbf{S 6}$ respectively (Table S1), no desired products were obtained for the potentially high steric-hindrance environment around the OH group. In different reaction conditions starting materials S5 and S6 were always detected, and sometimes unknown compounds were generated. Meanwhile, unexpected compound 9 was isolated in entries 4 and 5 , because the brook rearrangement reaction probably occurred.

Table S1, Screening reaction conditions to syntheize S7 and S8.

Entry	Reaction condition	Reference	Results
1	Pyridine, $\mathrm{Tf}_{2} \mathrm{O}, \mathrm{DCM}$	J. Am. Chem. Soc. 2021, 143, 513-523	S5 and S6 were intact. No $\mathbf{S 7}$ and $\mathbf{S 8}$ were obtained.
2	$\mathrm{NEt}_{3}, \mathrm{Tf}_{2} \mathrm{O}, \mathrm{DCM}$	$\begin{aligned} & \text { Org. Lett. 2002, } \\ & 4,4717-4718 \end{aligned}$	S5 and S6 were intact. No $\mathbf{S 7}$ and $\mathbf{S 8}$ were obtained.
3	$\mathrm{NEt}_{3}, \mathrm{Tf}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{CN}$	Angew. Chem. Int. Ed. 2018, 57, 2605-2610	S5 and S6 were intact. No $\mathbf{S 7}$ and $\mathbf{S 8}$ were obtained.
4	$\mathrm{NaH}, \mathrm{Tf}_{2} \mathrm{O}, \mathrm{Et}_{2} \mathrm{O}$	RSC Adv., 2013, 3, 21331-21334	Less than 20\% S5 and S6 were observed. No S7 and S8 were obtained. $\mathbf{S 9}$ was isolated in 62%.
5	n -BuLi, $\mathrm{Tf}_{2} \mathrm{O}, \mathrm{Et}_{2} \mathrm{O}$	Synlett, 2014; 25, 2488-2492	Less than $20 \% \mathbf{S 5}$ and $\mathbf{S 6}$ were observed. No $\mathbf{S 7}$ and $\mathbf{S 8}$ were obtained. $\mathbf{S 9}$ was isolated in 62%
6	$\mathrm{NEt}_{3}, \mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{Cl}, \mathrm{DCM}$	Chem. Commun., 2017, 53, 11584-11587	S5 and S6 were intact. No $\mathbf{S 7}$ and $\mathbf{S 8}$ were obtained.
7	$\underset{\mathrm{Et}_{2} \mathrm{O}}{\mathrm{n}-\mathrm{BuLi}} \mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{Cl},$	Chem. Commun., 2017, 53, 11584-11587	S5 and S6 were intact. No S7 and S8 were obtained.
8	DIPEA, PhNTf_{2}	Org. Lett. 2000, 2, 477-480.	S5 and S6 were intact. No $\mathbf{S 7}$ and $\mathbf{S 8}$ were obtained.

S9
Colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.33$ (br, 1H, OH), $7.41-7.31$ (m, 1H, CH-Ar), $7.29-7.21$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 6.88 (ddd, $\mathrm{J}=8.4,3.6,0.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 6.83-6.76$ (m, 1H, CH-Ar), $1.34\left(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.53,133.58(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 130.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 118.81(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 117.87(\mathrm{~d}, J=10.7$ $\mathrm{Hz}), 109.33(\mathrm{~d}, \mathrm{~J}=80.1 \mathrm{~Hz}), 37.18(\mathrm{~d}, J=58.0 \mathrm{~Hz}), 26.67$.
${ }^{31} \mathbf{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 69.03$.
HRMS (ESI'): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{P}^{+},[\mathrm{M}+\mathrm{H}]^{+}$: 255.1509 , found: 255.1504.

According to the literature, ${ }^{[3]}$ a modified method was carried out. In a high-pressure reaction vessel, $8 \mathbf{d}$ ($95.3 \mathrm{mg}, 0.238 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was dispersed in toluene (dry, 3 mL) and trichlorosilane ($0.18 \mathrm{~mL}, 1.78 \mathrm{mmol}, 7.5 \mathrm{eq}$.) was added. The vessel was sealed and upon heating to $100^{\circ} \mathrm{C}$ and the solid was dissolved completely. The reaction was carried out at $100^{\circ} \mathrm{C}$ for 5 hours until judged complete by TLC analysis. The solvent and residual reagents were removed under reduced pressure. The residue was purified through chromatography on a silica gel plug $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Removal of the solvent in vacuum afforded target compound $\mathbf{1 2}(68.7 \mathrm{mg}, 75 \%)$ as light yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.27$ (m, 12H, CH-Ar), $7.24-7.18$ (m, 3H, CH-Ar), 7.17-7.09 (m, 3H, CH-Ar), 2.37 (s, 3H, CH CH_{3}). ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.61(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 138.32(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 138.02,136.80(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 133.95,133.76$, $132.97,131.59,131.39,130.27,129.27,129.12(d, J=7.0 \mathrm{~Hz}), 128.92,128.64(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 21.34$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.45$.
HRMS (ESI ${ }^{+}$: m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{PS}^{+},[\mathrm{M}+\mathrm{H}]^{+}: 385.1175$, found: 385.1179.

According to the literature ${ }^{[4]}$ a modified method was carried out. To a solution of $8 \mathbf{d}\left(48.1 \mathrm{mg}, 0.12 \mathrm{mmol}, 1\right.$ eq.) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.0 \mathrm{~mL})$ was slowly added m-chloroperbenzoic acid ($72.48 \mathrm{mg}, 0.252 \mathrm{mmol}, 2.1 \mathrm{eq}$.) at $0^{\circ} \mathrm{C}$. After stirring for 1 hour at the same temperature, the mixture was allowed to warm to room temperature, and to this was added aqueous saturated solution of sodium bicarbonate (1 mL) and an aqueous saturated solution of sodium sulfite (1 mL). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic extract was washed with brine (5 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and after filtration, the filtrate was concentrated under reduced pressure. The residue was purified through chromatography on a silica gel plug (n-hexane/EtOAc $=2 / 1$) to give $13(49.0 \mathrm{mg}, 94 \%$) as light yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16$ ($\mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 8.05 (dd, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 7.85 (dd, $J=11.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, CH-Ar), 7.71 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), $7.63-7.53$ (m, 7H, CH-Ar), $7.47-7.43$ (m, 4H, CH-Ar), 7.24 (d, J=8.4 Hz, 2H, CH-Ar), 2.36 (s, 3H, CH ${ }_{3}$).
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.76,142.86(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 137.82,136.40(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}), 134.99(\mathrm{~d}, \mathrm{~J}=100.9 \mathrm{~Hz}), 132.61(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}), 132.10(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 131.71,130.93(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 130.73(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 130.66,130.17,129.70(\mathrm{~d}, J=11.5 \mathrm{~Hz})$, 128.88 (d, $J=12.4 \mathrm{~Hz}$), 127.93, 21.70.
${ }^{31}$ P NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.97$.

SUPPORTING INFORMATION

HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{PS}^{+}$, $[\mathrm{M}+\mathrm{H}]^{+}: 433.1022$, found: 433.1028 .
5. Crystallographic data:

X-ray data collection and structural refinement. Intensity data for compounds 5, 8a and 9f were collected using a Bruker APEX II diffractometer. The crystals were measured at 150 K . The structure was solved by direct phase determination (SHELX-2013) and refined for all data by full-matrix least squares methods on F2. All non-hydrogen atoms were subjected to anisotropic refinement. The hydrogen atoms were generated geometrically and allowed to ride in their respective parent atoms; they were assigned appropriate isotropic thermal parameters and included in the structure-factor calculations. CCDC; 2155866-2155868 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from the Cambridge Crystallography Data Center via www.ccdc.cam.ac.uk/data request/cif.

Table S2. X-ray data.

Compound Formula	5	8a	9f
	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{PSSi}_{2}$	$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NOP}$	$\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{BrN}_{5} \mathrm{O}_{2} \mathrm{P}$
CCDC	2155867	2155866	2155868
Fw	498.51	383.40	496.38
Cryst syst	monoclinic	monoclinic	monoclinic
Space size	P 21/n	P 21/n	P 21/n
Size (mm^{3})	$0.070 \times 0.070 \times 0.090$	$0.080 \times 0.07 \times 0.05$	$0.120 \times 0.100 \times 0.070$
T, K	150	302	150
a, \AA	12.443(3)	12.647(11)	16.2044(5)
b, \AA	11.957(2)	$b=12.361(9)$	28.6736(9)
c, A	17.315(4)	$\mathrm{c}=13.858$ (11)	21.3349(7)
α, deg	90	90	90
β, deg	109.966(1)	107.269(3)	107.471(1)
$\gamma, \operatorname{deg}$	90	90	90
$\mathrm{V}, \mathrm{A}^{3}$	2421.1(9)	2068.8(3)	9455.7(5)
Z	4	4	4
$d_{\text {calcd }}$ g.cm ${ }^{-3}$	1.368	1.231	1.395
μ, mm^{-1}	0.298	0.148	3.225
Refl collected	47013	20127	140593
$\mathrm{T}_{\text {min }} / \mathrm{T}_{\text {max }}$	0.974/0.979	0.982/0.997	0.713/0.798
$\mathrm{N}_{\text {measd }}$	4026	2746	16716
$\left[\mathrm{R}_{\text {int }}\right]$	0.0551	0.1048	0.0616
R [$1>2$ sigma(I$)$]	0.0412	0.0556	0.0308(16716)
$\mathrm{R}_{\mathrm{w}}[1>2$ sigma (I)]	0.1169	0.1198	0.0802(18651)
GOF	1.052	1.034	1.037
Largest diff peak/hole[e. \AA^{-3}]	0.286/-0.314	0.223/-0.238	0.86/1-1.081

SUPPORTING INFORMATION

6. Theoretical study

All the computational calculations reported in this work were performed using the Gaussian 09 code. ${ }^{[5-6]}$ The geometries for the ground state of these compounds were optimized at the B3LYP hybrid functional and $6-311 \mathrm{G}^{*}$ basis set for all atoms. The frequency calculations confirmed the nature of all revealed equilibrium geometries: there were no imaginary frequencies.

PO1
Optimized with MeCN

MePO1

Optimized with MeCN	
Angel $\left(^{\circ}\right)$	NPA charge
C1 129.49	C1 0.062
C2 124.47	C2 -0.002

PO3
Optimized with MeCN

Angel $\left({ }^{\circ}\right)$	NPA charge
C1 126.76	C1 0.020
C2 128.27	C2 0.021
$\Delta=-1.51$	$\Delta=-0.001$

C1 126.76 C1 0.020
C2 128.27 C2 0.021
$\Delta=-1.51 \quad \Delta=-0.001$

Figure S2. Distortion angle and NPA charges of optimized structures for PO1 MePO1 and PO2 in the solvent of acetonitrile via DFT calculation at B3LYP/6-311G*level of theory ($\Delta=$ C1-C2).

PO1 (In MeCN):
Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
0.252072 (Hartree/Particle)
0.269093
0.270038
0.204132
-1110.165447
-1110.148426
-1110.147481
-1110.213387

C	3.04454	2.80011	0.52326
C	3.40353	2.83975	-0.84028
C	2.62851	1.95617	-1.56821
C	1.73308	1.20956	-1.13611
C	1.29389	1.09386	0.17389
C	2.0318	1.96153	1.01365
P	0.00452	0.00856	0.88821
O	0.04971	0.00167	2.38583
C	-1.59714	0.59201	0.22082
C	0.31375	-1.64315	0.16367
C	-1.75189	1.20215	-1.02947
C	-3.0143	1.60472	-1.45977
C	-4.1271	1.40723	-0.6448
C	-3.97644	0.81214	0.60642
C	-2.71725	0.40776	1.04098
C	0.84833	-2.61651	1.01457
C	1.12962	-3.89084	0.52722
C	0.87946	-4.19944	-0.80806
C	0.34051	-3.23411	-1.65767
C	0.05457	-1.96024	-1.17466
H	3.57733	3.44106	1.21958
H	4.18699	3.48544	-1.21756

H	1.79917	1.95449	2.07403
H	-0.89138	1.38472	-1.6641
H	-3.12603	2.08134	-2.42834
H	-5.10895	1.725	-0.98087
H	-4.83926	0.66866	1.24878
H	-2.59014	-0.03514	2.02265
H	1.02918	-2.36775	2.05444
H	1.54172	-4.64309	1.1921
H	1.09849	-5.19279	-1.18666
H	0.13622	-3.47533	-2.69588
H	-0.38361	-1.22464	-1.84066

MePO1 (In MeCN)

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
0.279551 (Hartree/Particle)
0.298403
0.299347

Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
-1149.512961

C	1.41548	-0.09475	-0.05604
C	2.61684	0.06769	0.66532
C	3.89512	0.00059	0.07116
C	4.03217	-0.24118	-1.31598
C	2.80168	-0.38841	-1.92482
C	1.677	-0.3322	-1.40011
P	-0.18868	-0.00832	0.82064
C	5.12995	0.18189	0.92627
O	-0.01804	-0.03174	2.3094
C	-1.15963	-1.29998	0.20002
C	-1.40818	-2.46894	1.10315
C	-2.12892	-3.58972	0.69643
C	-2.60318	-3.67935	-0.61021
C	-2.36192	-2.64352	-1.51205
C	-1.64565	-1.52	-1.1094
C	-1.02933	1.50508	0.22326
C	-1.88453	2.14149	1.13144
C	-2.57653	3.28919	0.75469
C	-2.41726	3.8132	-0.52681
C	-1.55748	3.19189	-1.43035
C	-0.86232	2.0434	-1.05811
H	2.53491	0.24098	1.7347
H	5.0037	-0.29961	-1.79275
H	5.13218	1.15855	1.41834
H	5.183	-0.57716	1.71182
H	6.04212	0.10792	0.33109
H	-1.04125	-2.38374	2.12002
H	-2.32158	-4.3154	1.402
H	-3.16489	-4.55277	-0.92601
H	-2.73701	-2.70794	-2.52839
H	-1.48047	-0.71343	-1.8156
H	-1.98791	1.74097	2.13388
H	-3.23573	3.77786	1.4649
H	-2.95538	4.70952	-0.81847
H	-1.4197	3.60586	-2.42408
H	-0.17741	1.58514	-1.76339

PO2 (In MeCN):

Zero-point correction=

Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=
0.350627 (Hartree/Particle)
0.371902
0.372846
0.299868
-1073.180473
-1073.159198
-1073.158254
-1073.231232

C		1.9473	0.45509
C	3.09911		
C	4.09495	0.70484	1.31255
C	3.51918	1.0286	-0.35331
C	2.1612	0.7496	-1.15604
C	1.2635	0.43637	-0.10604
P	-0.47163	-0.01262	-0.47139
O	-0.7244	0.07133	-1.94145
N	-0.7378	-1.57284	0.09237
N	-1.35823	0.96887	0.57357
C	-2.78793	0.66405	0.7616
C	-0.93547	2.34771	0.88938
C	-3.7542	1.35099	-0.2084
C	-0.87514	3.33401	-0.28227
C	-1.03421	-2.64584	-0.87501
C	-0.67298	-1.92872	1.5137
C	0.18601	-3.26051	-1.56448
C	0.47196	-2.86711	1.90389
H	5.14245	1.23825	0.52266
H	4.15151	1.26309	-1.78494
H	1.76112	0.76811	-2.16503
H	-2.90536	-0.41778	0.67775
H	-3.04707	0.92339	1.79511
H	-1.63509	2.71463	1.64661
H	0.04153	2.3113	1.37706
H	-4.77284	0.98862	-0.03664
H	-3.76842	2.43521	-0.07464
H	-3.48247	1.13694	-1.24394
H	-0.58689	4.32464	0.0842
H	-0.13639	3.02644	-1.02489
H	-1.83493	3.42543	-0.79245
H	-1.59158	-3.41552	-0.32972
H	-1.70561	-2.24833	-1.63729
H	-0.59705	-1.00184	2.08499
H	-1.62923	-2.38732	1.80325
H	-0.12839	-4.06772	-2.23421
H	0.69936	-2.51015	-2.16852
H	0.90029	-3.67327	-0.84937
H	0.46645	-3.02756	2.98653
	0.37648	-3.84622	1.42895
H	1.44117	-2.44646	1.62839
H			

7. NMR Spectra

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1

${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1
상

$\stackrel{\substack{0 \\ \infty \\ \sim \\ \sim}}{\sim}$

16																
160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2

${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 2

స্লু

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2
-14.572

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3

${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4

${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 4

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4
$\stackrel{\leftrightarrow}{\circ}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5

${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 5

| 80 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 6

NNNNNNNNNNNNNN

${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 6

$\stackrel{n}{\circ}$
$\stackrel{m}{\Gamma}$

$\begin{array}{lllllllllllllll}140 & 138 & 136 & 134 & 132 & 130 & 128 & 126 & 124 & 122 & 120 & 118 & 116 & 114 & 112\end{array}$

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 6

[^0]${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $8 \mathbf{8 a}$

${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{8 a}$

1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	
160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{8 a}$
N

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{8 b}$

${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{8 b}$

$\begin{array}{lllllllrlllllllll}135 & 134 & 133 & 132 & 131 & 130 & 129 & 128 & 127 & 126 & 125 & 124 & 123 & 122 & 121 & 120 & 11\end{array}$

${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{8 b}$

O
$\stackrel{0}{0}$
1

	1	1		1		1				1			
50	300	250	200	150	100	50	0	-50	-100	-150	-200	-250	-300

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 8 c

${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (100 MHz, CDCl_{3}) spectrum of compound 8c

今융	~ั
NNO	¢

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $8 \mathbf{d}$

∞
$\stackrel{\circ}{\mathrm{M}}$
N

 ald

| 5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 |
| :--- |

${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{8 d}$

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{8 d}$

0
$\stackrel{0}{0}$
N

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 8 e

${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $8 \mathbf{e}$

0	300	250	200	150	100	50	0	-50	-100	-150

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) spectrum of compound $\mathbf{8 f}$

NNNNNNNNNNNNNNOMN

60	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{8 f}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 8 g

HMBC

${ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}) spectrum of compound $\mathbf{8 g}$
N

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 8 h ল
 $\stackrel{\circ}{\infty} \stackrel{0}{\circ}$
${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) spectrum of compound $\mathbf{8 h}$

${ }^{31} \mathrm{P}$ NMR（ $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound $\mathbf{8 h}$
※⿳士口䒑口＂

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound $\mathbf{8 i}$

${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{8 i}$

SUPPORTING INFORMATION

${ }^{31} \mathrm{P}$ NMR（ $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound $\mathbf{8 i}$
$\stackrel{\infty}{\stackrel{\infty}{+}} \underset{\substack{\infty \\ 1}}{\sim}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{8 j}$

춛웅ㅇㅇ우웅

Nへ	
べ入入入	N入N八入入入入入

${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ）spectrum of compound $\mathbf{8 j}$

	Noto
	$\stackrel{\sim}{\sim} \sim \sim_{\sim}^{\sim}$
「「フ	－「ブ

$\stackrel{n}{0}$
$\stackrel{-}{\top}$

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{8 j}$
N

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9a

NNNNNNNNNNNNGin

∞
∞
$\stackrel{\infty}{\circ}$

둗ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

No No

ค

$\underbrace{\stackrel{\text { N }}{\boldsymbol{\sim}}{ }^{5.5}}_{\substack{6.0 \\ \mathrm{f} 1(\mathrm{ppm})}}$

$\begin{array}{llllllllllllll}8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0\end{array}$

$5 \quad 1.0$
0.5
. 0 -0.

SUPPORTING INFORMATION

${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ）spectrum of compound 9a
寸 寸ion Mr M
耳～～Nㅇ
NN゚

尔 ！！
잉ㅇㅇㅇ
$\stackrel{\sim}{1} \underset{\sim}{m}$

| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |

${ }^{31} \mathrm{P}$ NMR（ $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 9a
$\underset{\underset{\sim}{\text { N }}}{\stackrel{N}{2}}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $9 \mathbf{~ b}$

NNNNNNNNNNNN

$\stackrel{0}{\circ}$

${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{9 b}$

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $9 \mathbf{9}$,
$\stackrel{\infty}{\sim}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9c
 NNNNNNNNNNNNo óo

$\left.\begin{array}{l}6860^{\circ} \\ 200^{\circ} 1 \\ \dagger Z 0^{\circ}\end{array}\right]$

${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9c

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9c
$\stackrel{\star}{\mathrm{o}}$
$\stackrel{y}{\mathrm{j}}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9d

ल ल NNNNNN

SUPPORTING INFORMATION

${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 9 d

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9d
N

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9e

 io

${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) spectrum of compound 9 e

이웅
$\stackrel{\varrho}{\infty}$

| \top | | | | | | | | | | | | | | | | | |
| :--- |
| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9 e $\stackrel{N}{\infty}$

0	280	240	200	160	120	80	60	40	20	0	-40	-80	-120	-160	-200	-240	-280

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $9 \mathbf{9}$

+6.9.0

SUPPORTING INFORMATION

${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ）spectrum of compound 9 f

${ }^{31} \mathrm{P}$ NMR（162 MHz， CDCl_{3} ）spectrum of compound 9 f
$\stackrel{\text { ®̈ }}{\text { ® }}$

\qquad

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $9 f{ }^{6}$

융

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9 h

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9 h

(

$\stackrel{\stackrel{N}{\mathrm{~N}}}{\stackrel{\mathrm{~N}}{4}}$

400	350	300	250	200	150	100	50	$\mathrm{fl}_{(\mathrm{ppan})}^{0}$	-50	-100	-150	-200	-250	-300	-350	-400

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $9 \mathbf{j}$

$\stackrel{\circ}{\circ}$

${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $9 \mathbf{j}$

		-	
둑	-	$\stackrel{\infty}{\circ}$	충
	ํㅡㅊ	$\stackrel{\circ}{\sim}$	ํㅜㄷ
尔?			$\bar{\top}$

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $9 \mathbf{j}$
$\stackrel{N}{N}$
$\stackrel{y}{1}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 10

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 11

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 11

M

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 12

${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 12

-21.337

N
N
ले
$\stackrel{1}{1}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 13

${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 13

${ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}) spectrum of compound 13
$\stackrel{\infty}{\infty}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{~ S 1}$

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{S} 1$
$\stackrel{\infty}{\infty}$

\qquad

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{S 2}$

${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{S 2}$

N
$\stackrel{y}{*}$

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{S 2}$

\circ
0

${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (100 MHz, CDCl_{3}) spectrum of compound S3

TMS
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{S 3}$
N
N
0
0
1

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{S 4}$

았్ల
5
$\stackrel{\text { O}}{\substack{0 \\ i \\ \hline}}$

${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound S4

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{S 4}$

\circ
$\stackrel{7}{+}$
1
1

${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{S 5}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{S 6}$

SUPPORTING INFORMATION

${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{S 6}$

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{S 6}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{S 9}$

${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{S} 9$

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{S 9}$

8. Reference

[1] T.-W. Hsu, C. Kim, Q. Michaudel, J. Am. Chem. Soc. 2020, 142, 11983 - 11987.
[2] M. H. Lyttle, A. Satyam, M. D. Hocker, K. E. Bauer, C. G. Caldwell, H. C. Hui, A. S. Morgan, A. Mergia, L. M. Kauvar, J. Med. Chem. 1994, 37, 1501-1507.
[3] T. A. Schaub, S. M. Brülls, P. O. Dral, F. Hampel, H. Maid, M. Kivala, Chem. Eur.J. 2017, 23, 6988 - 6992.
[4] Y. Nakamura, Y. Miyata, K. Uchida, S. Yoshida, S. Hosoya, Org. Lett. 2019, 21, 5252 - 5258
[5] Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
[6] a) G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comp. Chem. 2001, 22, 931-967; b) Amsterdam Density Functional, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com; c) C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, Theor. Chem. Acc. 1998, 99, 391-403.

[^0]:

