Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Tuning oxygen vacancies in MoS₂@MoO₂ hierarchical tubular heterostructure for high performance lithium-ion batteries

Chaofei Guo, Yaomeng Yao, YingNan Cao, Qin Feng, Yifan Zhang* and Yong Wang*
Department of Chemical Engineering, School of Environmental and Chemical
Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China.
*Corresponding authors: Tel: +86-21-66137723; fax: +86-21-66137725.

Email address: yongwang@shu.edu.cn; zyf010626@shu.edu.cn

Fig. S1. The Raman spectrum of MoO_3 , the peaks at 994, 818, 663, 468, 375, 334, 288, 242, 218, 195, 156 and 124 cm⁻¹ corresponding to its typical characteristics peaks. The peaks at 996 cm⁻¹ indicates the stretching vibration of terminal Mo=O (Ag mode) along a- and b-axes, the peak at 819 cm⁻¹ indicates the doubly coordinated oxygen (Mo-O-Mo) stretching mode, and the triply coordinated oxygen (Mo-O) stretching mode located at 667 cm⁻¹).

Fig. S2 TG curves of (a) $MoS_2@MoO_2-1$, (b) $MoS_2@MoO_2-2$, (c) $MoS_2@MoO_2-3$, (d) $MoS_2@MoO_2-4$ and (e) $MoS_2@MoO_2-5$. (f) The weight contents of MoO_2 and MoS_2 in $MoS_2@MoO_2-1$, $MoS_2@MoO_2-2$, $MoS_2@MoO_2-3$, $MoS_2@MoO_2-4$, and $MoS_2@MoO_2-5$ composite.

Fig. S3. (a-b) SEM images of MoO₃; (c-d) TEM images of MoO₃.

Fig. S4. (a) SEM image of MoO_3 and (b-c) the corresponding EDS mapping of Mo and O; (d) EDS spectra of MoO_3 .

Fig. S5. (a) and a-i) TEM and SEM images of $MoS_2@MoO_2-1$, (a-i)-(a-iV) the elemental mapping images of $MoS_2@MoO_2-1$, (a-v) EDS spectra; (b) and (b-i) TEM and SEM images of $MoS_2@MoO_2-2$, (b-i)-(b-iv) the elemental mapping images of $MoS_2@MoO_2-2$, (a-v) EDS spectra; (c) and (c-i) TEM and SEM images of $MoS_2@MoO_2-3$, (c-i)-(c-iV) the elemental mapping images of $MoS_2@MoO_2-3$, (c-i)) the elemental mapping images of $MoS_2@MoO_2-1$, (d-i)-(d-iV) the elemental mapping images of $MoS_2@MoO_2-1$, (d-i)) the elemental mapping images of $MoS_2@MoO_2-1$, (d-i)) the elemental mapping images of $MoS_2@MoO_2-1$, (d-v) EDS spectra; (e) and (e-i) the TEM and SEM images of $MoS_2@MoO_2-1$, (e-i)) the elemental mapping images of $MoS_2@MoO_2-1$, (e-iV) the elemental mapping images of $MoS_2@MoO_2-1$, (e-iV) the elemental mapping images of $MoS_2@MoO_2-1$, (e-iV) EDS spectra; (e) and (e-i) the TEM and SEM images of $MoS_2@MoO_2-1$, (e-iV) the elemental mapping images of $MoS_2@MoO_2-1$, (e-iV) EDS spectra.

Fig. S6. (a-e) The XPS survey spectrum of $MoS_2@MoO_2-1$, $MoS_2@MoO_2-2$, $MoS_2@MoO_2-3$, $MoS_2@MoO_2-4$ and $MoS_2@MoO_2-5$, respectively.

Fig. S7. (a) S 2p, and (b) Mo 3d high-resolution spectra of XPS survey spectrum.

Fig.S8 TEM images of (a) MoS₂@MoO₂-5 electrode after10 cycles, (b-c) after 100 cycles.

Fig. S9. (a-b) SEM images and (c) TEM images of MoS₂@MoO₂-4 after 100 cycles.

Fig. S10 (a-b) TEM images of MoS₂@MoO₂-1 after 100 cycles; (c-d) TEM images of MoS₂@MoO₂-2 after 100 cycles.

Fig. S11 (a) SEM image and (b) TEM image of MoS₂@MoO₂-3 after 100 cycles.

Fig. S12. (a) Cycling performances of MoO_3 ; (b) Charge-discharge voltage profiles of MoO_3 anodes at a current density of 0.1 C; (c) CV curves of MoO_3 anodes at a scan rate of 0.1 mV s⁻¹; (d) Cycling performances of commercial MoS_2 ; (e) Discharge-charge voltage profiles of MoS_2 anodes at a current density of 0.1 C; (f) CV curves of MoS_2 anodes at a scan rate of 0.1 mV s⁻¹.

Fig. S13. (a) CV curves of $MoS_2@MoO_2-1$ anodes at a scan rate of 0.1 mV s⁻¹; (b) CV curves of $MoS_2@MoO_2-2$ anodes at a scan rate of 0.1 mV s⁻¹; (c) CV curves of $MoS_2@MoO_2-3$ anodes at a scan rate of 0.1 mV s⁻¹; (d) CV curves of $MoS_2@MoO_2-5$ anodes at a scan rate of 0.1 mV s⁻¹; (e) Discharge-charge voltage profiles of $MoS_2@MoO_2-1$ anodes at a current density of 0.1 C; (f) Discharge-charge voltage profiles of $MoS_2@MoO_2-2$ anodes at a current density of 0.1 C; (g) Discharge-charge voltage profiles of $MoS_2@MoO_2-3$ anodes at a current density of 0.1 C; (g) Discharge-charge voltage profiles of $MoS_2@MoO_2-3$ anodes at a current density of 0.1 C; (h) Discharge-charge voltage profiles of $MoS_2@MoO_2-3$ anodes at a current density of 0.1 C; (h) Discharge-charge voltage profiles of $MoS_2@MoO_2-3$ anodes at a current density of 0.1 C; (h) Discharge-charge voltage profiles of $MoS_2@MoO_2-3$ anodes at a current density of 0.1 C; (h) Discharge-charge voltage profiles of $MoS_2@MoO_2-3$ anodes at a current density of 0.1 C; (h) Discharge-charge voltage profiles of $MoS_2@MoO_2-5$ anodes at a current density of 0.1 C; (h) Discharge-charge voltage profiles of $MoS_2@MoO_2-5$ anodes at a current density of 0.1 C; (h) Discharge-charge voltage profiles of $MoS_2@MoO_2-5$ anodes at a current density of 0.1 C; (h) Discharge-charge voltage profiles of $MoS_2@MoO_2-5$ anodes at a current density of 0.1 C; (h) Discharge-charge voltage profiles of $MoS_2@MoO_2-5$ anodes at a current density of 0.1 C.

Fig. S14 Equivalent circuit diagrams.

Fig. S15 Z' as a function of the $\omega^{-0.5}$ plot in the low frequency range (the slope of fitting curves is the Warburg factor, σ_{ω}).

Fig. S16. (a) CV curves of the MoS₂@MoO₂-1 electrode at different scan rate ranging from 0.2 to 1.0 mV s⁻¹; (b) The relationship of the sweep rate and peak current to derive the capacitive properties of MoS₂@MoO₂-1 electrode; (c) Contribution ratio of capacitive and diffusion controlled behaviors at scan various rates for MoS₂@MoO₂-1 electrode; (d) CV curves of of the MoS₂@MoO₂-2 electrode at different scan rate ranging from 0.2 to 1.0 mV s⁻¹; (e) The relationship of the sweep rate and peak current to derive the capacitive properties of MoS₂@MoO₂-1 electrode. (f) Contribution ratio of capacitive and diffusion-controlled behaviors at scan various rates for MoS₂@MoO₂-2 electrode; (g) CV curves of of the MoS₂@MoO₂-3 electrode at different scan rate ranging from 0.2 to 1.0 mV s⁻¹; (h) The relationship of the sweep rate and peak current to derive the capacitive properties of MoS₂@MoO₂-1 electrode. (i) Contribution ratio of capacitive and diffusion-controlled behaviors at scan various rates for MoS₂@MoO₂-3 electrode; (j) CV curves of of the MoS₂@MoO₂-5 electrode at different scan rate ranging from 0.2 to 1.0 mV s⁻¹; (k) The relationship of the sweep rate and peak current to derive the capacitive properties of MoS₂@MoO₂-1 electrode; (1) Contribution ratio of capacitive and diffusion-controlled behaviors at scan various rates for MoS_2 @MoO₂-5 electrode.

Fig. S17. The relationship of the sweep rate and peak current to derive the capacitive properties of $MoS_2@MoO_2-4$ electrode.

Fig. S18. Molecular models of MoS₂.

Samples	2θ (°)	Sin θ	d (nm)
MoS ₂ @MoO ₃ -1	13.07	0.11381	0.676
$MoS_2@MoO_3-2$	13.30	0.11583	0.664
$MoS_2@MoO_3-3$	13.85	0.12062	0.638
MoS ₂ @MoO ₃ -4	14.17	0.12334	0.624
MoS ₂ @MoO ₃ -5	14.30	0.12446	0.618

Table S1. Layer spacing of the series samples of MoS₂. According to the equations: $2d\sin\theta = n^*\lambda$, where n=1, $\lambda=0.15406$ nm, and 2 θ is value of {002}.

Samples	20 (°)	Sin θ	d (nm)
MoS ₂ @MoO ₃ -1	24.80	0.21940	0.351
$MoS_2@MoO_3-2$	25.15	0.21771	0.353
$MoS_2@MoO_3-3$	25.92	0.22427	0.345
MoS ₂ @MoO ₃ -4	25.94	0.22444	0.343
MoS ₂ @MoO ₃ -5	26.03	0.22520	0.342

Table S2. Layer spacing of the series samples of MoO₂. According to the equations: $2d\sin\theta = n^*\lambda$, where n=1, $\lambda=0.15406$ nm, and 2 θ is value of {011}.

Table S3. Summaries of the surface areas, the pore volumes and the average porediametersof MoO_3 , $MoS_2@MoO_2-1$, $MoS_2@MoO_2-2$, $MoS_2@MoO_2-3$, $MoS_2@MoO_2-4$ and $MoS_2@MoO_2-5$, respectively.

Samples	Surface	Pore Volume	Average pore
	Area (m ² g ⁻	$(cm^3 g^{-1})$	Diameter (nm)
	¹)		
MoO ₃	10.3	0.031	20.67
MoS ₂ @MoO ₂ -1	14.2	0.068	27.23
MoS ₂ @MoO ₂ -2	15.0	0.069	16.04
MoS ₂ @MoO ₂ -3	17.3	0.040	14.28
MoS ₂ @MoO ₂ -4	20.5	0.042	14.13
MoS ₂ @MoO ₂ -5	19.2	0.040	14.54

Sample	$\sigma_{\omega}(\Omega \text{ s}^{-0.5})$	$D_{K^+}(cm^2 s^{-1})$
MoS ₂ @MoO ₃ -1	31.6	5.71.10-13
MoS ₂ @MoO ₃ -2	24.1	9.82·10 ⁻¹³
MoS ₂ @MoO ₃ -3	17.8	1.80.10-12
$MoS_2@MoO_3-4$	17.0	1.98.10-12
MoS ₂ @MoO ₃ -5	15.8	2.30.10-12

Table S4. The Li^+ diffusion coefficients of five electrode after 100 cycles.