Supplementary Information

Reduced alkaline earth metal (Ca, Sr) substituted LaCoO₃ catalysts for the succinic acid conversion.

Mabel Rojas, *a,b Gabriel Bernales, a,c Ana Belen Dongil, d Gina Pecchi a,c and Néstor Escalona *a,b,e,f

^{a.} Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile.

^{b.} Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile.

^{*c.*} Departamento Físico Química, Facultad de Ciencias Químicas, Universidad de Concepción.

^{d.} Instituto de Catálisis y Petroleoquímica CSIC, Marie Curie 2 28049 Madrid Spain.

e. Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia

Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile. ^{f.}Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT.

*Corresponding authors: Mabel Rojas, mnrojas1@uc.cl, Néstor Escalona, neescalona@ing.puc.cl

Supplementary Information

Table of contents	Page
Table S1. Prepared solids, labels, Co, Sr and a bulk wt% (nominal in parenthesis) for La_{1-} xCa _x CoO ₃ and $La_{1-}xSr_xCoO_3$ (x=0.0, 0.2, 0.4) perovskites.	3
Table S2. Binding energy (eV) and atomic ratios of reduced perovskites (Co/La+M (M=Ca or Sr)).	3
Figure S1. N ₂ adsorption isotherms of the calcined at 700°C perovskites: a) La _{1-x} Ca _x CoO ₃ ; b) La _{1-x} Sr _x CoO ₃ .	4
Figure S2. Zoom of the 2θ values of the 47° diffraction peaks.	5
Figure S3. FTIR of the calcined at 700°C La ₁₋ xA_xCoO_3 (A = Ca, Sr; x = 0, 0.2, 0.4) perovskites.	6
Figure S4. FTIR of the reduced at 550°C and passivated $La_1 xA_xCoO_3$ (A = Ca, Sr; x = 0, 0.2, 0.4) perovskites.	7
Figure S5. XPS spectra of the O 1s, Co 2p, La 3d, Ca 2p and Sr 3d regions of reduced and passivated $La_1 XA_x CoO_3$ (A = Ca, Sr; x = 0, 0.2, 0.4) perovskites.	8
Figure S6. TEM micrography of a) $LaCoO_3$, b) $La_{0.8}Ca_{0.2}CoO_3$, c) $La_{0.6}Ca_{0.4}CoO_3$, d) $La_{0.8}Sr_{0.2}CoO_3$, e) $La_{0.6}Sr_{0.4}CoO_3$ and f) electron diffraction performed for the xCa=0.2.	
Figure S7. NH ₃ DTP-MS of the reduced at 500°C and passivated $La_1 xA_xCoO_3$ (A = Ca, Sr; x = 0, 0.2, 0.4) perovskites.	10
Figure S8. CO_2 DTP-MS of the reduced at 500°C and passivated $La_1 xA_xCoO_3$ (A = Ca, Sr; x = 0, 0.2, 0.4) perovskites.	11
Figure S9. He DTP-MS of the reduced at 500°C and passivated $La_1 x A_x CoO_3$ (A = Ca, Sr; x = 0, 0.2, 0.4) perovskites.	12
Figure S10. Conversion of succinic acid and yield of products vs. time over reduced at	13

500°C and passivated (a) LaCoO₃, (b) $La_{0.8}Ca_{0.2}CoO_3$, (c) $La_{0.6}Ca_{0.4}CoO_3$, (d) $La_{0.8}Sr_{0.2}CoO_3$

and (e) $La_{0.6}Sr_{0.4}CoO_3$ perovskites.

Table S1	. Prepared	solids,	labels,	Co, S	Sr and	a bull	k wt%	(nominal	l in	parenthesis)	for	La ₁₋ xCa,	,CoO₃
and La ₁₋ x	Sr _x CoO₃ (x=	=0.0, 0.2	2, 0.4) p	erov	skites								

Perovskites	Label		%			
-	Oxide	Reduced	Со	Sr	Са	
LaCoO ₃	x=0 calc	x=0 red	15.8 (24.0)	-	-	
La _{0.8} Ca _{0.2} CoO ₃	xCa=0.2-calc	xCa=0.2-red	18.6 (26.0)	-	3.2 (3.5)	
La _{0.6} Ca _{0.4} CoO ₃	xCa=0.4-calc	xCa=0.4-red	21.4 (28.6)	-	6.1 (7.8)	
$La_{0.8}Sr_{0.2}CoO_3$	xSr=0.2-calc	xSr=0.2-red	16.6 (25.0)	(7.4)	-	
La _{0.6} Sr _{0.4} CoO ₃	xSr=0.4-calc	xSr=0.4-red	18.5 (26.2)	(15.6)	-	

Table S2. Surface atomic (%) for reduced-passivated La_{1-x}Ca_xCoO₃ and La_{1-x}Sr_xCoO₃ (x=0.0, 0.2, 0.4) perovskites.

Perovskites	Surface atomic (%)							
	La	0	C ^[a]	Со	Sr or Ca			
LaCoO ₃	12.4	58.3	24.5	4.4	-			
La _{0.8} Ca _{0.2} CoO ₃	8.9	58.0	22.3	3.9	6.9			
La _{0.6} Ca _{0.4} CoO ₃	6.8	56.6	25.0	3.0	8.6			
$La_{0.8}Sr_{0.2}CoO_3$	11.9	57.3	22.6	4.9	3.3			
$La_{0.6}Sr_{0.4}CoO_3$	10.9	58.3	23.7	4.8	3.2			

[a] C 1S acts as reference

Figure S1. N₂ adsorption isotherms of the calcined at 700°C perovskites: a) $La_{1-x}Ca_xCoO_3$; b) $La_{1-x}Sr_xCoO_3$.

Figure S2. Zoom of the 2θ values of the 47° diffraction peaks.

Figure S3. FTIR of the calcined at 700°C La₁.xA_xCoO₃ (A = Ca, Sr; x = 0, 0.2, 0.4) perovskites.

Figure S4. FTIR of the reduced at 550°C and passivated $La_1 A_x CoO_3$ (A = Ca, Sr; x = 0, 0.2, 0.4) perovskites.

Figure S5. (continued)

Figure S6. TEM micrography of a) $LaCoO_3$, b) $La_{0.8}Ca_{0.2}CoO_3$, c) $La_{0.6}Ca_{0.4}CoO_3$, d) $La_{0.8}Sr_{0.2}CoO_3$, e) $La_{0.6}Sr_{0.4}CoO_3$ and f) electron diffraction performed for the xCa=0.2.

Figure S7. NH₃ DTP-MS of the reduced at 500°C and passivated $La_{1-}xA_xCoO_3$ (A = Ca, Sr; x = 0, 0.2, 0.4) perovskites.

Figure S8. CO_2 DTP-MS of the reduced at 500°C and passivated $La_{1-}xA_xCoO_3$ (A = Ca, Sr; x = 0, 0.2, 0.4) perovskites.

Figure S9. He DTP-MS of the reduced at 500°C and passivated $La_1 XA_x CoO_3$ (A = Ca, Sr; x = 0, 0.2, 0.4) perovskites.

Figure S10. Conversion of succinic acid and yield of products vs. time over reduced at 500°C and passivated (a) LaCoO₃, (b) La_{0.8}Ca_{0.2}CoO₃, (c) La_{0.6}Ca_{0.4}CoO₃, (d) La_{0.8}Sr_{0.2}CoO₃ and (e) La_{0.6}Sr_{0.4}CoO₃ perovskites.

