Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Information(ESI)

Molecular tiltation and supramolecular interactions induced uniaxial NTE and biaxial PTE in bis-imidazole based co-crystals

Sunil Kumar, ^aPriyasha^aand Dinabandhu Das^{*a}

School of Physical Sciences. Jawaharlal Nehru University, New Delhi-110067, India

Email: jnu.dinu@gmail.com

Table of Content

- Experimental section: Synthesis of ligand and co-crystals Figure S1. ¹H -NMR spectra of BIMB Figure S2. FT-IR spectra of BIMB Figure S3. FT-IR spectra of BIMB-TA Figure S4. FT-IR spectra of BIMB-BPDCA
- Differential Scanning Calorimetric study Figure S5. DSC thermogram of BIMB-TA Figure S6. DSC thermogram of BIMB-BPDCA

3. Figure S7. Photographs of single crystal of BIMB-TA and BIMB-BPDCA

4. Variable temperature Single Crystal X-ray Diffraction.

TableS1. Crystallographic data and structure refinement parameters of BIMB-TA
Table S2. Crystallographic data and structure refinement parameters of BIMB-BPDCA
Table S3.Change of Unit cell parameters of BIMB-TA with change of temperature
Table S4.Change of Unit cell parameters of BIMB-BPDCA with change of temperature
Table S5. Calculation of Thermal Expansion Coefficient by PASCal Program
Figure S8a Percent Change in length with temperature of BIMB-TA co-crystal
Figure S8b. Percent Change in length with temperature of BIMB-BPDCA co-crystal
Figure S9. Change of tilt angle of TA molecules in the crystal structure of BIMB-TA

Figure S10. Tiltation of **TA** molecules along *b*-axis in the crystal structure of **BIMB-TA** at different temperature

Figure S11. BIMB-TA co-crystal having C–H···O and C–H··· π interactions **Figure S12.** Change of tilt angle of **BPDCA** molecules in the crystal structure of **BIMB-BPDCA Figure S13.** Tiltation of **BPDCA** molecule along *a-axis* in the crystal structure of **BIMB-BPDCA BPDCA** at different temperature.

Figure S14. C–H···O interactions in the crystal structure of **BIMB-BPDCA Table S6.** Geometrical parameters of hydrogen bond in **BIMB-TA Table S7.** Geometrical parameters of hydrogen bond in **BIMB-BPDCA**

5. Powder X-ray Diffraction

Figure S15. Powder X-ray Diffractogram of BIMB-TA Figure S16. Powder X-ray Diffractogram of BIMB-BPDCA

6. Thermal Ellipsoid Plot of asymmetric unit at variable temperatures Figure S17. Thermal ellipsoid plot of BIMB-TA at different temperature Figure S18. Thermal ellipsoid plot of BIMB-BPDCA at different temperature

7. References

1. Experimental Section: Synthesis of the ligand **BIMB** and co-crystals **BIMB-TA** and **BIMB-BPDCA**

All chemicals were of reagent grade and were used without further purification. The ligand [1,4bis[(2-methylimidazol-1-yl)methyl]benzene] (BIMB)was synthesized by slightly modified procedure reported in the literature.¹In a two neck round bottom flask 1g (14.70mmol) of imidazole was dissolved in 15ml of dry THF solvent. The resulting solution was stirred at room temperature for 1h. Under inert atmosphere 500mg (20 mmol) of NaH was added to the imidazole solution of THF. The resulting suspension was stirred at room temperature for another 6h. THF solution of α , α '-dichloro-*p*-xylene(700mg, 4 mmol)was added dropwise to the reaction mixture, the resulting solution is further stirred at room temperature for another 5h. The solvent was removed under vacuum and the product was extracted with dichloromethane solvent. Colorless solid was obtained (approximately 850mg) and resulting solid was dissolved in hot water to get the colorless crystals of **BIMB**. Molecular structure of **BIMB** ligand has been characterized by ¹H NMRspectroscopy and IR. This compound was used to synthesize new Organic co-crystals with terephthalic acid (TA) and 4,4'-biphenyl dicarboxylic acid (BPDCA). Both the co-crystals have been prepared by solvent assisted grinding method. Few drops of methanol solvent were added in the mixture of components taken in 1:1 stoichiometric ratio and grinded in a mortar and pestle.

BIMB-TA co-crystal has been prepared by mixing 25mg (104.91mmol) of **BIMB** and 17.42mg(104.91mmol) of **TA**, while **BIMB-BPDCA** co-crystal has been prepared by taking 30mg (125.89mmol) of **BIMB** and 30.49mg (125.89mmol) of **BPDCA**. In both the cases the mixture was grinded by adding few drops of methanol in mortar and pestle. After grinding, the powdered material was dissolved in 10ml of methanol (for **BIMB-TA**) and 15ml of DMF (for **BIMB-BPDCA**) the resulting mixture was mechanically stirred for 15 minutes. The resulting solution is filtered and kept at room temperature for slow evaporation of the solvent. Within a week colorless

block shaped crystals were obtained. The co-crystals were characterized by IR, PXRD and the structures were confirmed by SCXRD.

Figure S1.¹H NMR spectrum of **BIMB** in CDCl₃ at RT.

Figure S3.FT-IR spectra of BIMB-TA co-crystal

Figure S4.FT-IR spectra of BIMB-BPDCA co-crystal

2.Differential Scanning Calorimetry

Differential scanning calorimetric measurements of the co-crystals **BIMB-TA** and **BIMB-BPDCA** has been carried using Mettler-Toledo DSC1 instrument. Approximately 3.5 mg of pure crystalline powder was sealed in aluminium pan and covered with a pierced lid. Samples were heated at the rate of 5°C/min under the flow of N₂ gas with the rate of 20 ml/min from 25 °C to 280°C in case of **BIMB-TA** and 25°C to 300°C for **BIMB-BPDCA**.

Figure S5. DSC thermogram shows melting of **BIMB-TA** at 247.41°C with an onset temperature of 245.66°C.

Figure S6. DSC thermogram shows melting of **BIMB-BPDCA** at 255.34°C with an onset temperature of 252.37°C.

3. Photographs of Single crystals

Figure S7. Photograph of single crystals of (a)BIMB-TA, (b) BIMB-BPDCA

4.Variable temperature Single Crystal X-ray Diffraction.

Single-crystal X-ray data of **BIMB-TA** and **BIMB-BPDCA** were collected on Bruker D8 Quest single crystal X-ray diffractometer equipped with a microfocus anode (MoK α) and PHOTON-II detector. A suitable single crystals was mounted on a glass fibre attached with epoxy glue and mounted on a goniometer head for data collection. Variable temperature on the crystal was maintained using an oxford cryostream 800 plus cryostat. Single crystal data was recorded at every 50 K interval in the temperature range of 100K to 500K for **BIMB-TA** and 100K to 450K for **BIMB-BPDCA** co-crystal. Data integration and scaling was done using Bruker suite program.² Structures were solved by direct methods using SHELXT-2014/5³ and refined by full-matrix leastsquares on F² using SHELXL-2018/3.⁴ Acidic protons (COOH) in the molecules of each cocrystals were assigned using difference Fourier map and rest of the hydrogen atoms were fixed in the riding model. All the non-hydrogen atoms were refined anisotropically. Crystallographic data and structure refinement parameters for each co-crystal is given in table below:

BIMB-TA	100K	150K	200K	250K	300K
Moiety formula	$C_{22}H_{20}N_4O_4$	$C_{22}H_{20}N_4O_4$	$C_{22}H_{20}N_4O_4$	$C_{22}H_{20}N_4O_4$	$C_{22}H_{20}N_4O_4$
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	C2/c	C2/c	C2/c	C2/c
a/Å	28.293(3)	28.341(3)	28.394(3)	28.446(3)	28.507(4)
b/Å	6.7462(8)	6.7394(8)	6.7333(8)	6.7253(8)	6.7177(8)
c/Å	11.0709(12)	11.0937(12)	11.1211(12)	11.1474(12)	11.1775(13)
α/(°)	90	90	90	90	90
β/(°)	106.737(4)	106.681(4)	106.624(4)	106.568(4)	106.525(4)
γ/(°)	90	90	90	90	90
V/Å ³	2023.6(4)	2029.8(4)	2037.3(4)	2044.1(4)	2052.1(4)
Z	4	4	4	4	4
$D_{\rm cal}/{ m g~cm^{-3}}$	1.327	1.323	1.319	1.314	1.309
T/K	100(2)	150(2)	200(2)	250(2)	300(2)
μ/mm^{-1}	0.094	0.093	0.093	0.093	0.092
F ₀₀₀	848	848	848	848	848
*Crystal	0.480×0.190×	0.480×0.190×	0.480×0.190×	0.480×0.190×	0.480×0.190×
size/mm ³	0.180	0.180	0.180	0.180	0.180
Reflections	22052	22230	22382	22460	22584
measured					
Unique	2513	2515	2530	2536	2546
reflections					
Observed	2298	2255	2231	2195	2150
reflections					
Parameters	152	140	140	140	140
R _{int}	0.0336	0.0295	0.0269	0.0261	0.0263
final R (I	0.0387	0.0393	0.0398	0.0415	0.0424
>2o(I))					
final <i>R</i> (all	0.0419	0.0436	0.0454	0.0479	0.0506
data)					

 Table S1. Crystallographic details of BIMB-TA

GOF on F ²	1.025	1.	038	1.033		1.043	1.068
CCDC no	2190757	219	0759	219075	8	2190763	2190760
BIMB-TA	350K		4	00K		450K	500K
Moiety formula	C ₂₂ H ₂₀ N	₄ O ₄	C ₂₂ H	I ₂₀ N ₄ O ₄	($C_{22}H_{20}N_4O_4$	$C_{22}H_{20}N_4O_4$
Crystal system	Monocli	nic	Mor	noclinic	1	Monoclinic	Monoclinic
Space group	C2/c		(C2/c		C2/c	C2/c
a/Å	28.556((3)	28.	607(4)		28.670(5)	28.740(5)
b/Å	6.7097((8)	6.7	015(8)	(6.6867(11)	6.6810(12)
c/Å	11.2036((13)	11.2	320(13)	1	1.2601(18)	11.2925(19)
α/(°)	90			90		90	90
$eta/(^{\circ})$	106.450	(4)	106.	.380(4)		106.366(6)	106.308(6)
γ/(°)	90			90		90	90
V/Å ³	2058.8((4)	206	5.9(4)		2071.2(6)	2081.0(6)
Z	4			4		4	4
$D_{\rm cal}/{ m g~cm^{-3}}$	1.305	;	1	.300		1.297	1.291
T/K	350(2)	4(00(2)		450(2)	500(2)
μ/mm^{-1}	0.092		0	.092		0.092	0.091
F_{000}	848		8	848		848	848
*Crystal size/mm	³ 0.480×0.1	190×	0.480	×0.190×	0.	480×0.190×	0.480×0.190×
	0.180)	0	.180		0.180	0.180
Reflections	22672	2	4:	5366		22881	22992
measured							
Unique reflection	s 2546		2	.558		2579	2595
Observed	2082		2	.124		1914	1799
reflections							
Parameters	152			152		152	152
R _{int}	0.028:	5	0.	0319		0.0356	0.0409
final R (I >2 σ (I))	0.0432	2	0.	0475	0.0453		0.0470
final <i>R</i> (all data)	0.053	9	0.	0584		0.0637	0.0704
GOF on F ²	1.035	5	1	.077		1.037	1.034
CCDC no	219076	65	219	90764		2190762	2190761

*Note: Crystal size has been measured at the 100K data.

BIMB-BPDCA	100K	150K	200K	250K	300K
Moiety formula	$C_{28}H_{24}N_4O_4$	$C_{28}H_{24}N_4O_4$	$C_{28}H_{24}N_4O_4$	$C_{28}H_{24}N_4O_4$	$C_{28}H_{24}N_4O_4$
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_l/n$	$P2_l/n$	$P2_l/n$	$P2_l/n$	$P2_l/n$
a/Å	6.6714(7)	6.6622(7)	6.6480(7)	6.6319(8)	6.6119(17)
b/Å	18.245(2)	18.301(2)	18.373(2)	18.452(2)	18.529(5)
c/Å	10.1498(13)	10.1785(12)	10.2097(13)	10.2411(14)	10.282(3)
α/(°)	90	90	90	90	90
β/(°)	108.052(4)	107.716(4)	107.337(4)	106.930(5)	106.490(10)
γ/(°)	90	90	90	90	90
V/Å ³	1174.6(2)	1182.1(2)	1190.4(2)	1198.9(3)	1207.9(6)
Ζ	2	2	2	2	2
$D_{\rm cal}/{ m g~cm^{-3}}$	1.359	1.350	1.341	1.331	1.321
T/K	100(2)	150(2)	200(2)	250(2)	300(2)
μ/mm^{-1}	0.093	0.092	0.092	0.091	0.090
F_{000}	504	504	504	504	504
*Crystal	0.370×0.210×	0.370×0.210×	0.370×0.210×	0.370×0.210×	0.370×0.210×
size/mm ³	0.050	0.050	0.050	0.050	0.050
Reflections	17897	18342	18547	18674	18840
measured					
Unique	2919	2941	2956	2972	3015
reflections					
Observed	2592	2562	2492	2400	2276
reflections					
Parameters	167	179	175	179	179
R _{int}	0.0399	0.0274	0.0271	0.0439	0.0454
final R (I >2 σ (I))	0.0560	0.0433	0.0447	0.0475	0.0504
final <i>R</i> (all data)	0.0626	0.0505	0.0540	0.0596	0.0688

Table S2. Crystallographic details of BIMB-BPDCA

GOF on F ²	1.040	1.031	1.065		.029	1.047
CCDC no	2190766	2190771	2190767 21		90768	2190770
BIMB-BP	DCA	350K	400K		450	К
Moiety for	mula	$C_{28}H_{24}N_4O_4$	C ₂₈ H ₂₄ N ₄ O ₄	4	C ₂₈ H ₂₄	N_4O_4
Crystal sy	stem	Monoclinic	Monoclinic	;	Mono	clinic
Space gr	oup	$P2_l/n$	$P2_l/n$		$P2_{1}$	/n
a/Å		6.5953(9)	6.5718(9)	İ	6.553	7(9)
b/Å		18.631(3)	18.708(3)		18.80	2(3)
c/Å		10.3065(17)	10.3308(17)	10.368	1(18)
α/(°)		90	90		90)
β/(°)		105.967(5)	105.470(5)		104.93	37(6)
γ/(°)		90	90		90)
$V/Å^3$		1217.6(3)	1224.1(3)		1234.	4(3)
Z		2	2		2	
$D_{ m cal}/ m g~ m cm$	n-3	1.311	1.304		1.2	93
T/K		350(2)	400(2)		450	(2)
µ/mm ⁻	1	0.090	0.089		0.0	88
F_{000}		504	504		50	4
*Crystal siz	e/mm ³	0.370×0.210× 0.050	0.370×0.210× 0.050		0.370×0.210× 0.050	
Reflections m	neasured	16960	19382		196	94
Unique refle	ections	2529	3039		300	57
Observed ref	lections	1977	2000		182	25
Paramet	ers	167	179		17	9
R _{int}		0.0435	0.0487		0.05	519
final R (I >	2σ(I))	0.0503	0.0567		0.06	506
final <i>R</i> (all	data)	0.0651	0.0890		0.1036	
GOF on	F ²	1.048	1.026		1.0	33
CCDC	no	2190772	2190769		2190	773

*Note: Crystal size has been measured at the 100K data.

Temperature (K)	a (Å)	b (Å)	<i>c</i> (Å)	α(°)	β(°)	γ(°)	Vol.(Å ³)
100	28.293(3)	6.7462(8)	11.0709(12)	90	106.737(4)	90	2023.6(4)
150	28.341(3)	6.7394(8)	11.0937(12)	90	106.681(4)	90	2029.8(4)
200	28.394(3)	6.7333(8)	11.1211(12)	90	106.624(4)	90	2037.3(4)
250	28.446(3)	6.7253(8)	11.1474(12)	90	106.568(4)	90	2044.1(4)
300	28.507(4)	6.7177(8)	11.1775(13)	90	106.525(4)	90	2052.1(4)
350	28.556(3)	6.7097(8)	11.2036(13)	90	106.450(4)	90	2058.8(4)
400	28.607(3)	6.7015(8)	11.2320(13)	90	106.380(4)	90	2065.9(4)
450	28.670(5)	6.6867(11)	11.2601(18)	90	106.366(6)	90	2071.1(6)
500	28.740(5)	6.6810(12)	11.2925(19)	90	106.308(6)	90	2081.0(6)

Table S3. Change of Unit cell parameters of BIMB-TA with change of temperature

Note: NTE of *b* axis from 100K to 500K highlighted by light orange color

Table S4. Change of Unit cell parameters of BIMB-BPDCA with change of temperature

Temperature (K)	a (Å)	b (Å)	c (Å)	α(°)	β (°)	γ(°)	Vol.(Å ³)
100	6.6714(7)	18.245(2)	10.1498(13)	90	108.052(4)	90	1174.6(2)
150	6.6622(7)	18.301(2)	10.1785(12)	90	107.716(4)	90	1182.1(2)
200	6.6480(7)	18.373(2)	10.2097(13)	90	107.337(4)	90	1190.4(2)
250	6.6319(8)	18.452(2)	10.2411(14)	90	106.930(5)	90	1198.9(3)
300	6.6119(17)	18.529(5)	10.282(3)	90	106.490(10)	90	1207.9(6)
350	6.5953(9)	18.631(3)	10.3065(17)	90	105.967(5)	90	1217.6(3)
400	6.5718(9)	18.708(3)	10.3308(17)	90	105.470(5)	90	1224.1(3)
450	6.5537(9)	18.802(3)	10.3681(18)	90	104.937(6)	90	1234.4(3)

Note: NTE of *a* axis from 100K to 450K highlighted by light green color

					Directions	
Cocrystals	Axes	$\alpha(MK^{-1})$	σα (MK ⁻¹)	a	b	c
BIMB-TA	X ₁	-24.6114	0.9115	-0.0000	1.0000	-0.0000
	X ₂	35.7840	0.8289	-0.6268	0.0000	0.7791
	X ₃	59.0444	0.6220	0.2569	-0.0000	0.9664
	V	70.2946	1.1427			
BIMB-BPDCA	X ₁	-73.8290	3.4588	0.9730	-0.0000	-0.2309
	X ₂	88.5435	2.4994	0.0000	1.0000	0.0000
	X ₃	129.3825	2.2908	0.6767	-0.0000	0.7363
	V	145.8850	1.9874			

Table S5. Calculation of thermal expansion coefficients of **BIMB-TA** and **BIMB-BPDCA** and by PASCal program.⁵

Figure S8(a) Percent change in length of the principal axes with temperature in (a) **BIMB-TA** and (b) **BIMB-BPDCA**

Figure S9. Change of tilt angle of **TA** molecules along *b* axis in the crystal structure of **BIMB-TA** with increasing temperature.

Tilt Angle of TA molecules in the crystal structure of BIMB-TA at different temperature

Figure S10. Tiltation of **TA** molecules along *b* axis in the crystal structure of **BIMB-TA** at different temperature.

Figure S11.Packing of molecules in the crystal structure of **BIMB-TA**.(a) C–H···O(magenta)(b) C–H··· π interactions are shown in green dotted lines.

Figure S12. Change of tilt angle of BPDCA molecules in the crystal structure of BIMB-BPDCA determined at different temperature

Tilt angle of BPDCA molecules in the crystal structure of BIMB-BPDCA determined at different temperature BIMB-BPDCA

Figure S13. Tiltation of **BPDCA** molecule along *a-axis* in the crystal structure of **BIMB-BPDCA** at different temperature.

Figure S14. Intermolecular interactions in the crystal structure of **BIMB-BPDCA** viewed down a axis: C-H···O hydrogen bonding interactions shown in yellow colour.

Table S6. Hydrogen bonding parameters in the crystal structures of **BIMB-TA** determined at different temperature⁶.

Donor-H…Acceptor	T(K)	D – H (Å)	H…A (Å)	D…A (Å)	∠D – H…A (°)
$O(1) - H(1A) \cdots N(1)$	100K	0.98(2)	1.61(2)	2.5914(14)	179(2)
	150K	0.96(2)	1.63(2)	2.5942(14)	179(2)
	200K	0.98(2)	1.62(2)	2.5971(15)	178(2)
	250K	0.98(2)	1.62(2)	2.6013(16)	179(3)
	300K	0.97(2)	1.64(2)	2.6053(16)	178(2)
	350K	0.98(3)	1.63(3)	2.6088(18)	178(2)
	400K	0.98(3)	1.63(3)	2.6120(18)	177(2)
	450K	0.96(3)	1.65(3)	2.6142(19)	178(3)

	500K	0.96(3)	1.66(3)	2.620(2)	179(3)
$C(5) - H(5) \cdots O(2)$		C(5) – H(5)	H(5) ····O(2)	C(5) ····O(2)	$C(5) - H(5) \cdots O(2)$
			(-)		
	100K	0.95	2.32	3.1293(14)	143
	150K	0.95	2.33	3.1368(14)	143
	200K	0.95	2.33	3.1452(16)	143
	250K	0.94	2.35	3.1537(16)	143
	300K	0.93	2.37	3.1633(18)	143
	350K	0.93	2.37	3.1714(18)	144
	400K	0.93	2.38	3.1810(19)	144
	450K	0.93	2.39	3.191(2)	144
	500K	0.93	2.40	3.200(2)	144
С(7)-Н(7)…π		C(7)-H(7)	Η(7)…π	С(7)…π	∠C(7)−H(7)··· <i>π</i>
	100K	0.97(2)	2.809(18)	3.7577(15)	166.7(14)
	150K	0.950	2.83	3.7677(16)	171
	200K	0.950	2.84	3.7789(16)	170
	250K	0.940	2.86	3.7923(19)	170
	300K	0.930	2.89	3.807(2)	170
	350K	0.95(2)	2.91(2)	3.818(2)	162.2(16)
	400K	0.94(3)	2.93(2)	3.831(2)	161.1(18)
	450K	0.92(3)	2.97(2)	3.846(2)	160.1(18)
	500K	0.92(3)	2.99(2)	3.861(3)	159.3(18)

Donor – H…Acceptor	T(K)	D – H (Å)	H…A (Å)	D ····A (Å)	$\angle D - H \cdots A (^{\circ})$
$O(1) - H(1A) \cdots N(1)$	100K	0.95(2)	1.60(2)	2.545(2)	176(2)
	150K	0.950(16)	1.600(17)	2.5496(15)	177.9(18)
	200K	0.949(16)	1.609(17)	2.5566(17)	178(2)
	250K	0.950(16)	1.613(17)	2.5625(18)	179(2)
	300K	0.951(19)	1.618(19)	2.569(2)	178(3)
	350K	0.952(19)	1.630(19)	2.579(2)	174(2)
	400K	0.95(2)	1.63(2)	2.582(2)	176(3)
	450K	0.95(2)	1.64(2)	2.587(3)	176(3)
C(1)– H(1)····O(2)		C(1)– H(1)	H(1)…O2	C(1)…O(2)	$\angle C(1) - H(1) \cdots O(2)$
	100K	0.95	2.32	3.069(2)	135
	150K	0.965(16)	2.281(16)	3.0732(17)	138.7(12)
	200K	0.95	2.32	3.0817(18)	137
	250K	0.953(18)	2.304(18)	3.0895(19)	139.3(14)
	300K	0.959(19)	2.303(19)	3.100(2)	140.1(14)
	350K	0.93	2.34	3.105(2)	140
	400K	0.99(2)	2.28(2)	3.112(3)	141.7(16)
	450K	1.00(3)	2.27(3)	3.121(3)	142.5(18)
C(2)– H(2)····O(1)		C(2)– H(2)	H(2)····O(1)	C(2)···O(1)	$\angle C(2) - H(2) \cdots O(1)$
	100K	0.95	2.44	3.061(2)	123
	150K	0.948(19)	2.525(17)	3.0767(16)	117.3(14)
	200K	0.942(19)	2.531(18)	3.0982(17)	119.0(14)
	250K	0.95(2)	2.551(18)	3.1165(19)	118.5(14)
	300K	0.95(2)	2.55(2)	3.141(2)	120.1(15)
	350K	0.93	2.55	3.166(2)	124
	400K	0.96(2)	2.59(2)	3.185(2)	120.4(15)
	450K	0.97(3)	2.61(3)	3.214(3)	121(2)

Table S7. Hydrogen bonding parameters in the crystal structures of **BIMB-BPDCA** determined at different temperature.

5. Powder X-ray Diffraction

Powder X-ray diffractogram was measured on Rigaku powder X-ray diffractometer (Miniflex600 with Cu K α radiation, $\lambda = 1.54059$ Å) operating in Bragg–Brentano geometry. Crystals of the compound was crushed gently and layered on a sample holder. Data was recorded at room temperature at a scan rate of 2°/min from 5° to 40° (2 θ value).

Figure S15. Powder X-ray Diffractogram of bulk sample of BIMB-TA (purple) and simulated pattern obtained from SCXRD data (red)

Figure S16. Powder X-ray Diffractogram of bulk sample of BIMB-BPDCA (purple) and simulated pattern obtained from SCXRD data (red)

6. Thermal Ellipsoid plot of the asymmetric unit at different temperatures

Figure S17.Thermal ellipsoid plot of the molecule in the asymmetric unit of the crystal structure of **BIMB-TA** at different temperature. Thermal ellipsoid plots are shown in 50 % probability.

150K

200K

250K

300K

350K

Figure S18. Thermal ellipsoid plot of the molecule in the asymmetric unit of the crystal structure of **BIMB-BPDCA** at different temperature. Thermal ellipsoid plots are shown in 50% probability.

• References

- 1. Z.-Z. Yang, Y. Zhao, G. ji, H. Zhang, B. Yu, X. Gao and Z. Liu, *Green Chem.*, 2014, 16, 3724-3728
- 2. SAINT; Bruker AXS Inc., Madison, Wisconsin, USA, 2013. SADABS; Bruker AXS Inc., Madison, Wisconsin, USA, 2012.
- 3. G. M. Sheldrick, SHELXT v 2014/5; http//:shelx.uni-ac.gwdg.de/SHELX/index.php.
- 4. , G. M. Sheldrick SHELXL v 2018/3; http://:shelx.uni-ac.gwdg.de/SHELX/index.php
- **5.** M. J.Cliffe and A. L. Goodwin, PASCAL: a principal axis strain calculator for thermal expansion and compressibility determination. *J. Appl. Crystallogr*, .2012,45, 1321-1329.
- 6. A. L. Spek, PLATON. Acta Cryst. 2009, D65, 148-155.