Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supplementary Information

Supramolecular structural control: photochemical reactions between styrylpyridine derivative and cucurbit[7,8]urils

Shang-Wei Yuan,^a Heng Wu,^a Xi Nan Yang,^a Mao-Xia Yang,^a Yang Luo,^a Wen Min,^a Zhen-Feng Lu,^a Carl Redshaw,^b Zhu Tao ^a and Xin Xiao^{*a}

^a Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou

University, Guiyang 550025, China.

^b Department of Chemistry, University of Hull, Hull HU6 7RX, U.K

E-mail: gyhxxiaoxin@163.com (X. Xiao)

1. Synthesis of CHP

Figure S1. The synthesis route of guest CHP.

4-[2-(4-Pyridinyl)ethenyl]phenol: 2.5 g (0.020mol) 4-hydroxybenzyl aldehyde and 2.7 g (0.029mol) 4-methylpyridine were added to 15 ml acetic anhydride, and heated to reflux overnight. 50 ml distilled water was added to quench the reaction and the pH was adjusted to 9 using 5%NaOH. The precipitate was filtered and collected, and washed with cold ethanol 3-5 times to obtain a pale-yellow solid.

CHP: 4-[2-(4-Pyridinyl)ethenyl]phenol (0.2 g, 0.001 mol) and 6-bromohexanoic acid (1.0 g, 0.005 mol) were dissolved in acetonitrile (30 mL). The solution was stirred under an inert nitrogen atmosphere and heated to 80°C and refluxed for 12 h. The resultant solution was concentrated to approximately 5 ml by vacuum rotary evaporation, and was added dropwise to 40 ml acetone. After being filtered off, the light green precipitate (compound CHP) was washed several times with acetone and dried. ¹H NMR (D₂O, 400 MHz): $\delta = 8.38$ (d, J = 6.8 Hz, 2H), 7.79 (d, J = 6.8 Hz, 2H), 7.58 (d, 1H), 7.52 (d, J = 8.9 Hz, 2H), 7.08 (d, J = 16.3 Hz, 1H), 6.97 (d, J = 8.5 Hz, 2H), 4.25 (t, J = 7.2 Hz, 2H), 2.05 (t, J = 7.3 Hz, 2H), 1.75 (m, 2H), 1.37 (m, 2H), 1.11 (q, J = 7.2 Hz, 2H); ¹³C NMR (DMSO-d₆, 100 MHz): δ (ppm)= 175.23, 169.97, 153.81, 152.87, 145.25, 140.77, 133.88, 130.25, 124.82, 124.31, 123.57, 60.46, 34.23, 25.84, 24.71, 21.94. HRMS calcd for [M]⁺: m/z = 312.1594, found: m/z = 312.1601.

Figure S4. ¹³C NMR spectra of CHP in DMSO-d₆ (100 MHz).

2. The interaction between CHP and Q[8]

Figure S5. (a) Relationship between absorbance and $N_{Q[8]}/N_{CHP}$; (b) Corresponding curve of ΔA - $N_{Q[8]}/(N_{Q[8]}+N_{CHP})$.

2.2 The fluorescence spectroscopy

Figure S6. (a) Relationship between fluorescence intensity and $N_{Q[8]}/N_{CHP}$; (b) Corresponding curve of ΔA - $N_{Q[8]}/(N_{Q[8]}+N_{CHP})$.

2.3 The Isothermal titration calorimetry experiment

The first binding constant K_{a1} and the second binding constant K_{a2} are obtained by fitting the ITC curve using a sequential binding model.

Figure S7. Isothermal titration calorimetry profiles of Q[8] in the presence of the guest CHP in aqueous solution at 298.15 K.

Table S1. ITC data of Q[8]-CHP						
$K_{al}/(\mathrm{M}^{-1})$	$K_{a2}/(M^{-1})$	$\Delta H_1 / (\text{kJ} \cdot \text{mol}^{-1})$	$\Delta H_2 / (\text{kJ} \cdot \text{mol}^{-1})$			
3.951×10^{6}	4.637×10 ⁵	-33.19	-9.830			

2.4 The association constants of CHP with Q[8] and Q[7]

Figure S8. (a) The Ka of CHP with Q[7] by UV absorption spectra and (b) Fluorescence absorption spectra

Figure S9. (a)The Ka of CHP with Q[8] by UV absorption spectra and (b) Fluorescence absorption spectra.

3. Interaction between CHP and Q[7]

3.1 COSY NMR spectra of Q[7]-CHP

Figure S10. COSY NMR spectra of Q[7]-CHP in D₂O (400 MHz).

3.2 UV absorption spectra

Figure S11. (a) Relationship between absorbance and $N_{Q[7]}/N_{CHP}$; (b) Corresponding curve of ΔA - $N_{Q[7]}/(N_{Q[7]}+N_{CHP})$.

3.3 Fluorescence spectroscopy

Figure S12. (a) Relationship between fluorescence intensity and $N_{Q[7]}/N_{CHP}$; (b) Corresponding curve of $\Delta A-N_{Q[7]}/(N_{Q[7]}+N_{CHP})$.

3.4 The Isothermal titration calorimetry experiment

The first binding constant K_{a1} and the second binding constant K_{a2} are obtained by fitting the ITC curve using a sequential binding model.

Figure S13. Isothermal titration calorimetry profiles of Q[7] in the presence of the guest CHP in aqueous solution at 298.15 K.

Table S2. If C data of CHP@Q[7]						
$K_{al}/(M^{-1})$	$K_{a2}/(M^{-1})$	$\Delta H_1 / (\text{kJ} \cdot \text{mol}^{-1})$	$\Delta H_2 / (\text{kJ} \cdot \text{mol}^{-1})$			
5.249×10 ⁷	2.958×10 ⁵	-30.9	-3.552			

Figure S14. COSY NMR spectra of Q[7]-(cis-CHP) in D₂O (400 MHz).

4. Photochemical reaction of CHP

4.1 Photodimerization of CHP catalyzed by Q[8]

Figure S15. UV-Vis spectra of CHP solution $(1 \times 10^{-4} \text{ mol/L})$ with UV irradiation in the presence

of Q[8].

4.2 Photodimerization of CHP inhibited by Q[7]

Figure S16. UV-visible spectra of CHP solutions $(1 \times 10^{-4} \text{ mol/L})$ with different Q[7] contents after 8h of UV irradiation.

5. Analysis of the competitive effect of Q[7] and Q[8] in the presence of CHP 5.1 ¹H NMR spectrum

Figure S17. ¹H NMR spectrum (400MHz, D₂O) of (a) the guest CHP (1.0×10⁻³ mo1/L); (b) Q[7]-CHP; (c) on adding 0.5 equivalent of Q[8]; (d) on adding 1.0 equivalent of Q[8].

5.2 The fluorescence spectroscopy

Figure S18. (a) Fluorescence spectra of Q[8]-CHP ($2.0 \times 10^{-5} \text{ mo1/L}$) on adding increased amounts of Q[7] (0, 0.1, 0.2... 4.0 equivalents); (b) Relationship between concentration and fluorescence emission and N_{Q[7]} / N_{CHP+Q[8]}.

6. Comparison of fluorescence intensity

Figure S19. (a) Fluorescence spectra of CHP, CHP-Q[7], CHP-Q[8] after 8 hours of irradiation; (b) Photos under 365 nm ultraviolet light.

7. pKa of CHP

Figure S20. The pKa of CHP $(2 \times 10^{-5} \text{mol/L}^{-1})$ in aqueous solution.

Figure S21. The HRMS spectrum of CHP.