Supporting information for

Organic composite photocatalysts from g-C₃N₄ and soluble dibenzothiophene-S-S'-dioxide-containing polymer for hydrogen generation under visible light

Na Mao^{*a*} and Jia-Xing Jiang^{*b*,*}

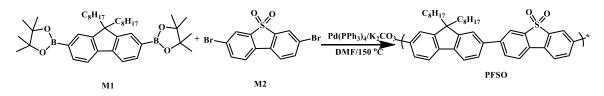
^a College of Chemistry and Materials, Weinan Normal University, Weinan 714099, P. R. China ^bShaanxi Key Laboratory for Advanced Energy Devices, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China. E-mail: <u>jiaxing@snnu.edu.cn</u>.

2.3 Characterizations

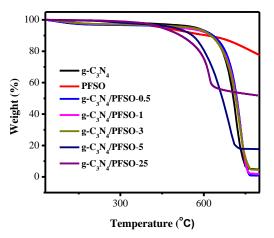
The FT-IR spectra were collected in transmission on a Tensor 27 FT-IR spectrometer (Bruker) using KBr disks. The thermal properties of the polymer networks were evaluated using thermogravimetric analysis (TGA) with a differential thermal analysis instrument (Q1000DSC + LNCS + FACS Q600SDT) over the temperature ranging from 30 to 800°C under a nitrogen atmosphere with a heating rate of 10°C min⁻¹. Solid-state ¹³C nuclear magnetic resonance (NMR) measurements were performed on a Bruker advance 400 Hz spectrometer. X-ray diffraction measurement (XRD) was carried out on X-ray Deffractometer (D/Max-3c). The morphology of the polymer networks were carried out on an environmental scanning electron microscope (FEI, Quanta 200) and transmission electron microscopy (JEOL, JEM-2100). Surface areas and pore size distributions were measured by nitrogen adsorption and desorption at 77.3 K using an ASAP 2420-4 (Micromeritics) volumetric adsorption analyzer. The surface

areas were calculated in the relative pressure (P/P_0) range from 0.05 to 0.20. Pore size distributions and pore volumes were derived from the adsorption branches of the isotherms using the non-local density functional theory. Gas sorption isotherms were measured on an ASAP 2420-4. The samples were degassed at 120°C for 12 h under vacuum (10⁻⁵ bar) before analysis. The UV-vis diffuse reflectance spectra (DRS) were measured on a UV-Lambda 950(PerkinElmer, US) spectrophotometer and the absorption spectra were obtained by the conversion of Kubelka-Munk approach, using BaSO₄ as the reflectance standard. X-ray photoelectron spectroscopy (XPS) measurements were performed on an HI5700ESCA instrument with monochromatic Al Ka (1486.6 eV) X-ray radiation. The fluorescent spectra of the polymer powders were measured with a Shimadzu F-7000 PC fluorescence spectrometer by using excitation wavelength of 365 nm at room temperature. Electrochemical measurements were performed on a CHI 660 C electrochemical instrument with a standard three-electrode system. The prepared electrodes act as working electrodes, using a Pt flake and calomel (saturated KCl) as counter electrode and reference electrode, respectively. The light source utilizes a 300 W Xe arc lamp. CV curve measurements were determined in tetrabutylammonium hexafluorophosphate (NBu₄PF₆) and acetonitrile solution under N_2 atmosphere with as can rate of 100 mV s⁻¹ in the range of -2 V to 1 V. For the conversion from Hg/Hg₂Cl₂ redox couple to the Normal Hydrogen Electrode (NHE), the equation E_{NHE}=E_{SCE}-0.24 V was applied. Electrochemical impedance spectroscopy (EIS) measurements were determined at an AC voltage magnitude of 5 mV with the frequency range of 10^5 to 10^{-2} Hz in Na₂SO₄ (0.5 mol/ L) aqueous solution. Working electrodes were prepared as follows: FTO glass was washed sequentially with distilled water, ethanol and acetone in an ultrasonic cleaner for 30 min. Then, 0.05 g of g-C₃N₄ or g-C₃N₄/PFSO photocatalyst was ground with 7 μ L of fluoride resin solution to obtain slurry, and then the slurry was coated onto 1 cm ×2 cm FTO glass electrode by the spin coater.

2.4 Photocatalytic Reactions


 H_2 evolution reactions were carried out in a gas-closed circulation system with a side window by the photocatalyst. The photocatalyst (0.1 g) was suspended in 100 mL of aqueous solution which contain 20 vol % triethanolamine (TEOA) as a sacrificial agent for H_2 evolution and 1% H_2PtCl_6 as co-catalyst. All photocatalytic experiments were performed in a double-walled glass reactor, where the outer compartment is circulated with water keeping a constant temperature (25°C) through a thermostat. The suspension was thoroughly degassed to remove air and irradiated by a 300 W Xe lamp (Beijing Perfect Light Co.). The yield of H_2 was measured by an online Agilent 7890 gas chromatography (TCD), using N_2 or Ar as the carrier gas.

Synthesis of 3,7-dibromodibenothiophene-S, S-dioxide


To a solution of Dibenzothiophene-dioxide (2.00 g, 9.24 mmol) in conc H₂SO₄ (60 mL) was added NBS (3.28 g, 18.48 mmol) and the resulting mixture was stirred at icewater. After 24 h, the solution was poured into ice water carefully. Colorless solids were filtrated and washed with water and methanol. The obtained solids were recrystallized from trichloromethane to afford desired product (1.6 g, 46%) as colorless needles. ¹H·NMR·(400 MHz, CDCl₃): δ 7.95 (d, 2H), 7.79(d, 2H), 7.65 (d, 2H)[1].

Schematic S1. Schematic illustration for the preparation of 3,7-dibromodibenothiophene-S,S-dioxide.

Schematic S2. Schematic illustration for the preparation of PFSO.

Fig. S1. Thermogravimetric analysis curve of g-C₃N₄, PFSO and g-C₃N₄/PFSO composites under N₂ atmosphere.

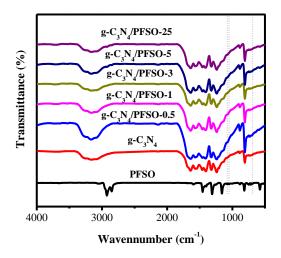


Fig.S2. FTIR of all samples g-C₃N₄, PFSO and g-C₃N₄/PFSO composites.

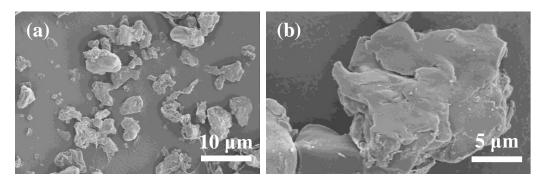


Fig.S3.TEM images of the pure PFSO

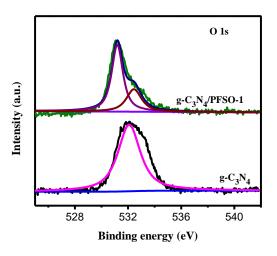


Fig.S4 High-resolution analysis of O 1s for PFSO, g-C $_3N_4$ /PFSO-1 composite.

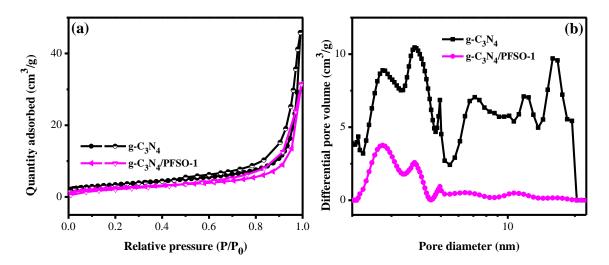


Fig.S5 (a) Nitrogen adsorption–desorption isotherms and (b) the corresponding pore-size distribution curves for pure $g-C_3N_4$ and $g-C_3N_4/PFSO-1$ composite samples.

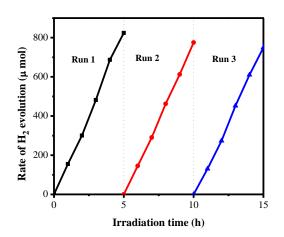
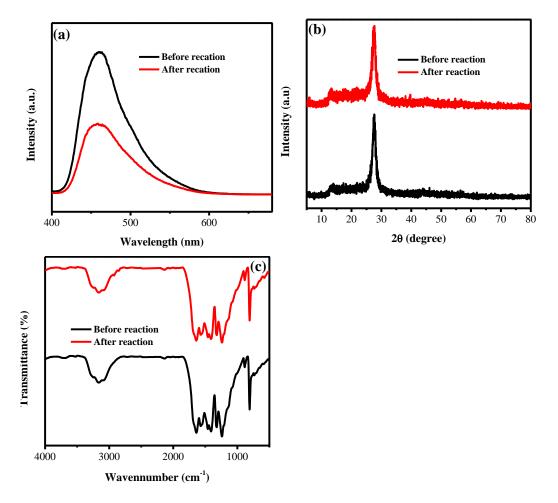



Fig.S6 Recyclability of g-C₃N₄/PFSO-1 photocatalyst for the photocatalytic H₂ evolution.

Fig.S7. (a) Photoluminescencespectra ($\lambda_{ex} = 365 \text{ nm}$); (b) Powder XRD spectra, (c) FT-IR spectra of g-C₃N₄/PFSO-1 composite before and after irradiation under visible light ($\lambda > 400 \text{ nm}$) for 15 h in a triethanolamine/water mixture.

References

[1] K. C. Moss, K. N. Bourdakos, V. Bhalla, K. T. Kamtekar, M. R. Bryce, M. A. Fox, H. L.

Vaughan, F. B. Dias, A. P. Monkman, J. Org. Chem. 2010, 75, 6771-6781.