Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Information

Nitridation of Cr-urea complex into nanocrystalline CrN and its antiferromagnetic magnetostructural transition study

Dadan Singh^a, Saumya Tamrakar^a, Kamlesh Shrivas^b*, Khemchand Dewangan^{*a}

^aDepartment of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484887, MP, India

^bSchool of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, CG, India

*Corresponding authors: <u>khemchand.dewangan@igntu.ac.in</u> (KD), <u>kshrivas@gmail.com</u> (KS)

Fig. S1 EDX spectrum of CrN nanoparticles.

Fig. S2 (a) Low and (b) high magnified TEM images of CrN nanoparticles. (c) Histogram for the particle size distribution of CrN nanoparticles.

Fig. S3 XPS survey spectrum of CrN nanoparticles.

Fig. S4 XRD pattern of the product obtained after 350 °C heated Cr-Urea complex.

Fig. S5. FTIR spectra: (a) $Cr(NO_3)_3 \cdot 9H_2O$, (b) NH_2CONH_2 (urea), (c) precursor, and (d) CrN nanoparticles.

Compounds	Wavenumber (cm ⁻¹)	Band assignment	References
Cr(NO ₃) ₃ ·9H ₂ O	~ 3000	v(O–H) of H ₂ O	[1]
	1627	δ (O–H) of H ₂ O	[1]
	1385	$v(N=O) \text{ of } NO_3^-$	[2-3]
	1294	$\nu_{asym}(NO_2)ofNO_3^-$	[2-3]
	1044	$v_{sym}(NO_2)$ of NO_3^-	[2-3]
	814	$\delta(NO_2)$ of NO_3^-	[2-3]
NH ₂ CONH ₂	3428	v_{asym} (NH ₂)	[4]
	3328	v_{sym} (NH ₂)	[4]
	1675	v(C=O)	[4]
	1588	$\delta(NH_2)$	[4]
	1455	vC–N	[4]
Precursor	778	Cr-O-N/Cr-N	present work
	927		
CrN nanoparticles	~600	Cr–N	[5-7] and present work.

Table S1: IR frequencies and band assignments for the $Cr(NO_3)_3 \cdot 9H_2O$, NH_2CONH_2 ,
precursor, and CrN nanoparticles. (v and δ are the stretching and bending
vibration modes, respectively)

Fig. S6 Magnetization versus magnetic field (M-H) curve of CrN nanoparticles.

Fig. S7 Orthorhombic unit cell of CrN (four formula units): (a) and (b) AFM-[110]₂ ordering. (c) and (d) are the AFM-[110]₁ ordering.

References:

- [1] X. Hou, K.-L. Choy, N. Brun and V. Serín, Nanocomposite coatings codeposited with nanoparticles using aerosol-assisted chemical vapour deposition. *J. Nanomater.* **2013**, *2013*, 219039.
- [2] L. V. Volod'ko and L. T. Huoah, The vibrational spectra of aqueous nitrate solutions. *J. Appl. Spectrosc.* **1968**, *9*, 1100-1104.
- [3] L. Gubrynowicz and T. Strömich, Study on the thermal decomposition of chromium(III) nitrate nonahydrate (CNN). *Thermochim. Acta* **1987**, *115*, 137-151.
- [4] M. L. Bai, S. Zhao and S. Asuha, Synthesis and thermal decomposition of Cr–urea complex. *J. Therm. Anal. Calorim.* **2014**, *115*, 255-258.
- [5] M. Hirai, T. Suzuki, H. Suematsu, W. Jiang and K. Yatsui, Mechanism of hardening in Cr–Al– N–O thin films prepared by pulsed laser deposition. *J. Vac. Sci. Technol. A* **2003**, *21*, 947-954.
- [6] O. Banakh, P. E. Schmid, R. Sanjinés and F. Lévy, High-temperature oxidation resistance of $Cr_{1-x}Al_xN$ thin films deposited by reactive magnetron sputtering. *Surf. Coat. Technol.* **2003**, *163-164*, 57-61.
- [7] K. S. Weil, The synthesis of transition metal nitrides via thermolysis of metal–ammine complexes, Part I: Chromium nitride. *J. Solid State Chem.* **2008**, *181*, 199-210.