Two-dimensional type-II XSi₂P₄/MoTe₂ (X=Mo, W) van der Waals

heterostructures with tunable electronic and optical properties

Qingqing Luo^a, Shaoqian Yin^{a,*}, Xiaoxin Sun^a, Yanan Tang^b, Zhen Feng^c, and Xianqi

Dai^{a,*}

^a School of Physics, Henan Normal University, Xinxiang, Henan 453007, China.

^b School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044, China.

[°] School of Materials Science and Engineering, Henan Engineering Research Center for Modification Technology of Metal Materials, Henan Institute of Technology, Xinxiang, Henan 453000, China

Fig. S1. The band structures and corresponding PDOS for MoSi₂P₄ and WSi₂P₄ monolayers

Fig. S2. Calculated the band structures of MoSi₂P₄/WSi₂P₄ under tensile 2.1% /1.8%

* Address correspondence to E-mail: ysq@htu.edu.cn (Shaoqian Yin), xqdai@htu.edu.cn (Xianqi Dai)

Calculated the b	oinding energy E	E_b (eV) and cohe	sive energy E_{coh}	(eV) of different	models for the
$MoSi_2P_4/MoTe_2$ and $WSi_2P_4/MoTe_2$ heterostructures					
	A1	A2	A3	A4	A5
E _b (eV)	-0.254	-0.241	-0.177	-0.173	-0.270
E _{coh} (eV)	-5.512	-5.511	-5.504	-5.504	-5.514
	B1	B2	B3	B4	B5
E _b (eV)	-0.298	-0.218	-0.218	-0.220	-0.361
E _{coh} (eV)	-4.766	-4.758	-4.758	-4.756	-4.767

Table S1

Fig. S3. The bond lengths $(d_{Mo-P} \text{ and } d_{W-P})$ and total energies under different strains for the (a) $MoSi_2P_4/WSi_2P_4$ and (b) WSi_2P_4/WSi_2P_4 heterostructures.

Fig. S4. The optimized structures of (a) $MoSi_2P_4/MoTe_2$ heterostructure and (b) $WSi_2P_4/MoTe_2$ heterostructure under biaxial strain ϵ =-9%. (Where the purple, watermelon red, pink, cyan and yellow spheres represent the Mo, W, Si, P and Se elements, respectively).

Fig. S5. The bandgap as of MoSi₂P₄, WSi₂P₄ and MoTe₂ as functions with various biaxial strains

Fig. S6. The band structures of (a) $MoSi_2P_4$, (b) WSi_2P_4 and (c) MoTe2 under different strains

Fig. S7. The projected band structures of the MoSi₂P₄/MoTe₂ vdWHs under different biaxial strains

Fig. S8. The projected band structures of the WSi₂P₄/MoTe₂ vdWHs under different biaxial strains

Fig. S9. The projected band structures of the $MoSi_2P_4/MoTe_2$ vdWHs under different external electric fields

Fig. S10. The projected band structures of the $WSi_2P_4/MoTe_2$ vdWHs under different external electric fields