Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

(Supplementary information)

Enhanced Alkaline Bifunctional Electrocatalytic Water Splitting Achieved Through

N and S Dual Doped Carbon Shell Reinforced Co₉S₈ Microplates

Mudasir Dar, ^a Kowsar Majid, ^{a*} and Malik Wahid^{a*}

^aDepartment of Chemistry

Interdisciplinary Division for Renewable Energy and Advanced Materials (iDREAM), NIT Srinagar. Srinagar-190006, India. E-mail: malikwahid15@gmail.com; kowsar@nitsri.in

Number of pages12Number of figures09Number of tables03

Calculations:

1. XPS calculations:

XPSPEAK 4.1fitting software was used to analyze individual peak areas to determine the synthesized sample's relative surface elemental composition. Areas (A) enclosed by individual peaks and the relative atomic sensitivity factors (F) of 0.25, 0.66, 0.42, 0.54, and 3.8 for C1s, O1s, N1s S 2p, and Co 2p, respectively, were put in equation S1 to calculate the relative atomic compositions.

Relative atomic % of Z = (Az/Fz) / [(Az/Fz) + (Ay/Fy)]Eqn. (S1)

A standard fitting procedure in XPSPEAK 4.1 was adopted to deconvolute individual C1s, O1s, and N1s peaks into their possible functional group peaks by fitting standard binding energy values from the literature.

2. IR-correction, Tafel slope, and overpotential calculations:

The LSV measurements were rectified for electrolyte resistance using equation S2.

 $E_{corrected} = E - IR$ Eqn. (S2)

Here, I is the measured current (A), R is the uncompensated solution resistance (ohm), and E is the potential applied (V).

The overpotentials (η) are calculated using:

 $\eta = E_{corrected} - E_{rev.}$

Where $E_{rev.}$ is the thermodynamic potential (V). On RHE scale, $E_{rev.}$ is 0 V for HER. Therefore, the $E_{corrected}$ is equal to applied η . For OER, the $E_{rev.}$ is 1.23 V vs. RHE, and the η will be

 $\eta = E_{corrected} - 1.23 V$

Tafel plots for HER and OER are obtained from their respective LSV curves, and the Tafel slopes were calculated as per the Tafel equation:

η = a + b log j

Where a, b, and j represent the Tafel constant, Tafel slope, and current density, respectively.

3. Calculation of Electrochemical active surface area (ECSA):

ECSA was determined using the cyclic voltammetry (CV) technique, involving double-layer capacitance measurement (C_{dl}) of electrocatalysts in the non-Faradiac region. In a typical procedure, carbon fiber modified with an active catalyst acting as a working electrode, Pt mesh, and Ag/AgCl as counter and reference electrodes were used in 1 M KOH solution. CV scans of electrocatalysts were recorded at scan rates of 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200 mV sec⁻¹ in a non-Faradiac potential window of 0 - 0.3 V vs. Ag/AgCl electrode. The value of C_{dl} is equal to half of the slope of $\Delta J = (Ja-Jc)$ at 0.15 V vs. scan rate curve. The ECSA was then calculated using the equation:

ECSA \approx C_{dl} / C_S

Where C_s is the specific capacitance, defined as capacitance per unit area of an atomically smooth planar electrocatalyst surface, the value of C_s is reported as 40 μ F in 1 M KOH solution.

Supplementary figures and tables.

Figure S1. XRD pattern of hydrothermally synthesized Co₉S₈-200 sample

Figure S2. (a) FESEM image of $Co_9S_8@NSC-10$. (b) FESEM image of $Co_9S_8@NSC-6$.

Figure S3. (a) FESEM image of Co_9S_8 -800. (b) and (c) HRTEM images of of Co_9S_8 -800. (d) SAED pattern of Co_9S_8 -800.

Figure S4. (a) XPS survey spectrum of Co_9S_8 ; deconvoluted XPS spectra of: (b) S2p, (c) Co 2p of Co_9S_8 material.

Figure S5. Deconvoluted XPS spectra: (a) C1s of $Co_9S_8@NSC-6$, (b) C1s of $Co_9S_8@NSC-8$, (c) C1s of $Co_9S_8@NSC-10$, (d) N1s of $Co_9S_8@NSC-6$, (e) N1s of $Co_9S_8@NSC-8$, (f) N1s of $Co_9S_8@NSC-10$, (g) S 2p of $Co_9S_8@NSC-6$, (h) S 2p of $Co_9S_8@NSC-8$, (i) S 2p of $Co_9S_8@NSC-10$, (j) Co 2p of $Co_9S_8@NSC-6$, (k) Co 2p of $Co_9S_8@NSC-6$, (k) Co 2p of $Co_9S_8@NSC-8$, (l) Co 2p of $Co_9S_8@NSC-6$, (k) Co 2p of $Co_9S_8@NSC-8$, (l) Co 2p of $Co_9S_8@NSC-6$, (k) Co 2p of $Co_9S_8@NSC-8$, (l) Co 2p of $Co_9S_8@NSC-6$, (k) Co 2p of $Co_9S_8@NSC-8$, (l) Co 2p of $Co_9S_8@NSC-6$, (k) Co 2p of $Co_9S_8@NSC-8$, (l) Co 2p of $Co_9S_8@NSC-6$, (k) Co 2p of $Co_9S_8@NSC-8$, (l) Co 2p of $Co_9S_8@NSC-6$, (k) Co 2p of $Co_9S_8@NSC-8$, (l) Co 2p of $Co_9S_8@NSC-6$, (k) Co 2p of $Co_9S_8@NSC-8$, (l) Co 2p of $Co_9S_8@NSC-6$, (k) Co 2p of $Co_9S_8@NSC-8$, (l) Co 2p of $Co_9S_8@NSC-6$, (k) Co 2p of $Co_9S_8@NSC-8$, (l) Co 2p of $Co_9S_8@NSC-6$, (k) Co 2p of $Co_9S_8@NSC-8$, (l) Co 2p of $Co_9S_8@NSC-6$, (l) Co 2

 Table S1. XPS functional group analysis of Co9S8@NSC samples.

			s		
			Co₃S₃@NSC-6	Co₃S₃@NSC-8	Co₃S ₈ @NSC-10
F	C-C/ C=C	Peak Position (eV)	284.6	284.6	284.6
		%	46.9	73.3	66.3
	C-S-C	Peak Position (eV)	285.28	285.59	285.1
Carbo		%	23.4	5	9.6
	C-N/ C-O	Peak Position (eV)	286	286.1	285.8
		%	20.6	13.9	13.4
	0=C-O/ N-C=O	Peak Position (eV)	288.28	288.5	287.3
		%	9.1	7.7	10.7
	Pyridinic N	Peak Position (eV)	398.47	398.39	398.52
		%	28.4	26.4	13.4
Nitrogen	pyrrolic N	Peak Position (eV)	399.46	399.53	399.60
		%	17.1	18	5.1
	Graphitic N	Peak Position (eV)	400.69	400.82	399.60
		%	50.7	47.9	45.2
	Graphitic N oxide	Peak Position (eV)	403.6	403.01	404.29
		%	3.8	7.7	36.2

Figure S6. Long-term chronoamperometric (i-t curve) durability test of Co_9S_8 -8 in 1 M KOH: (a) for OER at the potential step of 270 mV vs. RHE; inset (a) polarization curves before (red) and after (black) the stability test of Co_9S -8; (b) for HER at the potential step of 314 mV vs. RHE; inset (b) polarization curves before (red) and after (black) the stability test of Co_9S -8

Figure S7. ECSA determination of synthesized electrocatalyst samples in 1 M KOH. Cyclic voltammograms at different scan rates (20-200 mV sec⁻¹) in non-Faradiac region of (a) $Co_9S_8@NSC-10$; (b) $Co_9S@NSC_8-6$ and (c) $Co_9S_8@NSC-8$. (d)The corresponding plot of scan rate vs. current.

Table S2. HER and OER performance of Co_9S_8 @NSC and some other noble-metal-free electrocatalysts at 10 mA cm⁻² in 1.0 M KOH. (j: current density; η : overpotential)

Catalysts	OER		HER		
	η (for J=10 mA cm ⁻ ²) [mV]	Tafel Slope [mV dec ⁻¹]	η (for J=10 mA cm ⁻ ²) [mV]	Tafel Slope [mV dec ⁻¹]	Reference
Co ₉ S ₈ @NSC	120	48	267	85	This work
Ni/Ni(OH) ₂	-	-	300	128	1
Porous Co-based film	-	-	375	-	2
Co-NRCNT	-	-	370	-	3
Co ₉ S ₈ @MoS ₂ /CNFs	430	61	-	-	4
FeCoNi-PS	162	-	284	-	5
FeCoNi-P	235	-	346	-	5
FeCoNi-S	244	-	468	-	5
NiCo ₂ S ₄ NWs/NF	260	40	210	59	6
MoS ₂ /NiS yolk-shell microspheres	350	108	244	97	7
Phosphorene quantum dot/ MoS ₂ nanosheets	370	46	600	162	8
Co–FeS ₂ nanospheres	324	50	267	58	9
N-, O-, S-tridoped carbon encapsulated Co ₉ S ₈	340	68	320	105	10
Co ₉ S ₈ /N,S-rGO	266	75	332	131	11
(Ni _{0.33} Co _{0.67})S ₂ nanowires/ carbon cloth	216	78	334	127	12
Ni–Mo–S nanowires	390	75	290	103	13
Co(OH) ₂ /Ni–Co–S nanotube arrays	340	64	254	88	14
N-carbon coated NiCo $_2S_4$ hollow nanotubes	330	87	295	90	15
(210)-Ni ₃ S ₂ nanosheets arrays	260	-	223	-	16
NiS microsphere	335	89	158	83	17
Ni(OH) ₂ /Ni ₃ S ₂ nanosheets arrays	211	153	270	129	18

Figure S8. Long-term chronoamperometric (i-t curve) durability test at a potential step of 1.9 V using Co₉S₈@NSC-8 at both electrodes in the twoelectrode configuration in 1M KOH, inset depicts Polarization curves before (black) and after (red) stability test of Co₉S₈@NSC-8.

Figure S9. (a) XRD pattern, (b) Raman spectrum, and (c) FESEM image of a sample of $Co_9S_8@NSC-8$ after being used as an electrocatalyst for water splitting in full-cell configuration in 1M KOH solution at a potential of 1.9 V for 12 h.

Catalysts	Cell Voltage (for J=10 mA cm ⁻²) [V]	Electrolyte	Reference
Co ₉ S ₈ @NSC	1.60	1M KOH	This Work
Ni@NC-800/NF	1.60	1М КОН	19
NiSe/NF	1.63	1M KOH	20
Ni ₂ P nanowires	1.63	1M KOH	21
CoSe film	1.65	1М КОН	22
Ni/Mo ₂ C-PC/NF	1.66	1M KOH	23
Ni ₅ P ₄ /NF	1.69	1М КОН	24
CoP _x /NC	~ 1.71	1М КОН	25
Co-P film on Au foil	1.73	1М КОН	26
Ni ₃ S ₂ /NF	1.76	1М КОН	27
Ni(OH)2/NiSe	1.78	1М КОН	28
NiCo ₂ S ₄ NW/NF	1.63	1М КОН	29
CoOSeP@Co	1.74	1M KOH	30
RuO ₂ / RuO ₂	1.45	1M KOH	31
RuO₂/Pt-C on CF	1.56	1M KOH	32
Ir-C/Pt-C on EG	1.62	1M KOH	33
P/Pt	>1.8	1M KOH	34
IrO₂/Pt-C	1.6	1M KOH	35
Pt-C/Pt-C	1.75	1М КОН	35
IrO ₂ /IrO ₂	>1.9	1М КОН	35
- Pt-C on Ni foam	1.67	1М КОН	36
RuO₁/Pt-C both on Ti mesh	1.57	1М КОН	37

Table S3. Comparison of the full cell water-splitting activity of Co₉S₈@NSC catalyst with other reported bifunctional catalysts in basic medium.

References:

- 1 N. Danilovic, R. Subbaraman, D. Strmcnik, K.-C. Chang, A. P. Paulikas, V. R. Stamenkovic and N. M. Markovic, *Angew. Chemie*, 2012, **124**, 12663–12666.
- 2 Y. Yang, H. Fei, G. Ruan and J. M. Tour, *Adv. Mater.*, 2015, **27**, 3175–3180.
- 3 X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmeková and T. Asefa, Angew. Chemie, 2014, 126, 4461–4465.
- 4 H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang, B. Liu, J. Yao and X. Zhang, *Adv. Mater.*, 2015, **27**, 4752–4759.
- 5 L. Yin, X. Ding, W. Wei, Y. Wang, Z. Zhu, K. Xu, Z. Zhao, H. Zhao, T. Yu and T. Yang, *Inorg. Chem. Front.*, 2020, 7, 2388–2395.
- 6 A. Sivanantham, P. Ganesan and S. Shanmugam, Adv. Funct. Mater., 2016, 26, 4661–4672.
- 7 Q. Qin, L. Chen, T. Wei and X. Liu, *Small*, 2019, **15**, 1803639.
- 8 R. Prasannachandran, T. V. Vineesh, M. B. Lithin, R. Nandakishore and M. M. Shaijumon, Chem. Commun., 2020, 56, 8623–8626.
- 9 L. Gao, C. Guo, X. Liu, X. Ma, M. Zhao, X. Kuang, H. Yang, X. Zhu, X. Sun and Q. Wei, New J. Chem., 2020, 44, 1711–1718.
- 10 S. Huang, Y. Meng, S. He, A. Goswami, Q. Wu, J. Li, S. Tong, T. Asefa and M. Wu, Adv. Funct. Mater., 2017, 27, 1606585.
- 11 H. Liu, C. Y. Xu, Y. Du, F. X. Ma, Y. Li, J. Yu and L. Zhen, *Sci. Reports 2019 91*, 2019, **9**, 1–10.
- 12 Q. Zhang, C. Ye, X. L. Li, Y. H. Deng, B. X. Tao, W. Xiao, L. J. Li, N. B. Li and H. Q. Luo, ACS Appl. Mater. Interfaces, 2018, 10, 27723–27733.
- 13 Z. Ma, H. Meng, M. Wang, B. Tang, J. Li and X. Wang, *ChemElectroChem*, 2018, **5**, 335–342.
- 14 F. Wu, X. Guo, G. Hao, Y. Hu and W. Jiang, J. Solid State Electrochem., 2019, 23, 2627–2637.
- 15 F. Li, R. Xu, Y. Li, F. Liang, D. Zhang, W. F. Fu and X. J. Lv, *Carbon N. Y.*, 2019, **145**, 521–528.
- 16 L. L. Feng, G. Yu, Y. Wu, G. D. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, J. Am. Chem. Soc., 2015, 137, 14023–14026.
- 17 W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang and J. Wang, *Chem. Commun.*, 2016, **52**, 1486–1489.
- 18 X. Du, Z. Yang, Y. Li, Y. Gong and M. Zhao, J. Mater. Chem. A, 2018, 6, 6938–6946.
- 19 X. Wang, W. Li, D. Xiong and L. Liu, J. Mater. Chem. A, 2016, 4, 5639–5646.
- 20 C. Tang, N. Cheng, Z. Pu, W. Xing and X. Sun, Angew. Chemie Int. Ed., 2015, 54, 9351–9355.
- 21 L. A. Stern, L. Feng, F. Song and X. Hu, Energy Environ. Sci., 2015, 8, 2347–2351.
- 22 T. Liu, Q. Liu, A. M. Asiri, Y. Luo and X. Sun, *Chem. Commun.*, 2015, **51**, 16683–16686.
- 23 Z.-Y. Yu, Y. Duan, M.-R. Gao, C.-C. Lang, Y.-R. Zheng and S.-H. Yu, *Chem. Sci.*, 2017, 968–973.
- 24 M. Ledendecker, S. Krickcalderön, C. Papp, H. P. Steinrück, M. Antonietti and M. Shalom, Angew. Chemie Int. Ed., 2015, 54, 12361– 12365.
- 25 B. You, N. Jiang, M. Sheng, S. Gul, J. Yano and Y. Sun, *Chem. Mater.*, 2015, **27**, 7636–7642.
- 26 J. A. Vigil and T. N. Lambert, *RSC Adv.*, 2015, **5**, 105814–105819.
- 27 L. L. Feng, G. Yu, Y. Wu, G. D. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, J. Am. Chem. Soc., 2015, 137, 14023–14026.

- 28 H. Liang, L. Li, F. Meng, L. Dang, J. Zhuo, A. Forticaux, Z. Wang and S. Jin, Chem. Mater., 2015, 27, 5702–5711.
- A. Sivanantham, P. Ganesan and S. Shanmugam, *Adv. Funct. Mater.*, 2016, **26**, 4661–4672.
- 30 Y. F. Jiang, C. Z. Yuan, X. Zhou, Y. N. Liu, Z. W. Zhao, S. J. Zhao and A. W. Xu, *Electrochim. Acta*, 2018, **292**, 247–255.
- 31 Y. Dang, T. Wu, H. Tan, J. Wang, C. Cui, P. Kerns, W. Zhao, L. Posada, L. Wen and S. L. Suib, *Energy Environ. Sci.*, 2021, 14, 5433–5443.
- 32 W. Li, X. Gao, D. Xiong, F. Xia, J. Liu, W. G. Song, J. Xu, S. M. Thalluri, M. F. Cerqueira, X. Fu and L. Liu, *Chem. Sci.*, 2017, 8, 2952–2958.
- 33 Y. Hou, M. R. Lohe, J. Zhang, S. Liu, X. Zhuang and X. Feng, *Energy Environ. Sci.*, 2016, 9, 478–483.
- 34 M. Ledendecker, S. Krickcalderõn, C. Papp, H. P. Steinrück, M. Antonietti and M. Shalom, *Angew. Chemie Int. Ed.*, 2015, **54**, 12361–12365.
- 35 N. Jiang, B. You, M. Sheng and Y. Sun, *Angew. Chemie Int. Ed.*, 2015, **54**, 6251–6254.
- 36 C. Tang, N. Cheng, Z. Pu, W. Xing and X. Sun, *Angew. Chemie Int. Ed.*, 2015, **54**, 9351–9355.
- 37 J. Tian, N. Cheng, Q. Liu, X. Sun, Y. He and A. M. Asiri, J. Mater. Chem. A, 2015, 3, 20056–20059.