Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

NJC

Electronic Supplementary Information

Palladium catalyzes hydrogen production from formic acid: significant impact of support polypyrrole

Sifan Liu,^a Ruixiao Ma,^a Xuejing Wang,^a Yanmei Chen,^a Juan Xu,^a Yanhui Zhang*^a

^a College of Chemistry, Chemical Engineering and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, P.R. China

*To whom correspondence should be addressed. E-mail Address: zhangyh@mnnu.edu.cn

$$TOF = \frac{P_{atm}V_{H_2}}{RTn_{Pd}t}$$
 Equation S1

The equation S1 can learn about the catalytic performance of Pd/PPy-S1 and Pd/PPy-S2. Where *TOF* is turnover frequency at a certain conversion of formic acid to hydrogen, V_{H_2} is the the volume of hydrogen produced, n_{Pd} is the mole number of the Pd, *R* is the universal gas constant (8.314 m³·Pa/(mol·K)), P_{atm} is the atmospheric pressure (101325 Pa), T is the reaction temperature at 333K, and *t* is for the reaction time of 5 h.

Table S1 The catalyst activity data of Pd/PPy-S1 for hydrogen production from formic acid.

Catalyst	T/K	Solvent	hydrogen production/mL		
Pd/PPy-S1	298	formic acid and sodium formate	1		
	333	formic acid	3		
	333	formic acid and sodium formate	22		

	Catalyst	T/K Reactants hydrogen production rate		TOF/h ⁻	Reference	
	Pd/C	303	formic acid:sodium formate = 4:1	16.82 mL H ₂ in 2 h	35.5	53
C	CoAuPd NPs	298formic acid70 mL mL H2 in 400min	70 mL mL H ₂ in 400 min	13.3	54	
150 s	c% Pd-on-Au/C	296	formic acid	$22.5 \ \text{mL mL } H_2 \ \text{in 3 } h$	35.2	55
Au	ı/MgAl-LDH	333	formic acid and sodium formate	11.5 mL H_2 in 10 h	4.1	56
	Pd/PPy-S1	333	formic acid and sodium formate	$22 \text{ mL } H_2 \text{ in 5 } h$	8.6	This work
	Pd/PPy-S2	333	formic acid and sodium formate	$19 \text{ mL H}_2 \text{ in 5 h}$	7.4	This work

Table S2 Comparison of some catalysts used in formic acid dehydrogenation reaction.

Fig. S1 FT-IR spectra of PPy and Pd/PPy.

NJC

Fig. S2 XRD patterns of Pd/PPy-S1 and Pd/PPy-S2 before and after the catalytic reaction.