SUPPORTING INFORMATION

Siloxane-Containing Derivatives of Benzoic Acid: Chemical Transformation of the Carboxyl Group.

Supp.Inf.2: NMR, ESI HRMS and IR spectra for 3aa-ap

Irina K. Goncharova,^{*a,b} Eva A. Ulianova,^{a,c} Roman A. Novikov,^d Alexander D. Volodin,^a Alexander A. Korlyukov,^a Ashot V. Arzumanyan^{*a,b}

AUTHOR ADDRESS

^a A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation

^b A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federation

^c HZ University of Applied Sciences, 4382 NW Middelburg, The Netherlands

^d N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation

Characterisation data for (1H-imidazol-1-yl)(4-(1,1,3,3,3-pentamethyldisiloxaneyl)phenyl)methanone:

¹H NMR (400 MHz, DMSO-d6): δ = 8.08 (s, 1H), δ = 7.77-7.70 (m, 4H), δ = 7.55 (m, 1H), δ = 7.16 (m, 1H), δ = 0.36 (s, 6H), δ = 0.11 (s, 9H). ¹³C NMR (100 MHz, DMSO-d6): δ = 147.66, 138.32, 134.99, 133.50, 132.36, 130.99, 128.80, 118.16, 2.07, 0.91. ²⁹Si NMR (80 MHz, DMSO-d6): δ = 9.94, -2.77. ¹⁵N NMR (40 MHz, DMSO): δ = 266.48, 205.46.

²⁹Si NMR

(80 MHz, CDCl₃)

S5

Characterisation data for methyl 4-(1,1,3,3,3-pentamethyldisiloxaneyl)benzoate:

¹H NMR (400 MHz, DMSO-d6): $\delta = 7.95$ (d, ³J=8 Hz, 2H), $\delta = 7.68$ (d, ³J=8 Hz, 2H), $\delta = 3.85$ (s, 3H), $\delta = 0.33$ (s, 6H), $\delta = 0.06$ (s, 9H). ¹³C NMR (100 MHz, DMSO-d6): $\delta = 166.71$, 146.07, 133.52, 130.79, 128.66, 52.57, 2.34, 1.06. ²⁹Si NMR (80 MHz, DMSO-d6): $\delta = 9.48$, -2.06. HRMS (ESI) m/z z [M + NH₄] + : calcd for [C₂₀H₂₆O₅Si₂ + NH₄]⁺, 420.1657; found, 420.1656; [M + Na] + : calcd for [C₂₀H₂₆O₅Si₂ + Na]⁺, 425.1211; found, 425.1214; [M + K] + : calcd for [C₂₀H₂₆O₅Si₂ + K]⁺, 441.0950; found, 441.0948. IR (cm⁻¹): 2957, 1938, 1730, 1601, 1557, 1499, 1436, 1389, 1314-1256, 1187-968, 876-638.

	¹³ C NM	R															
(100]	MHz, DM	(ISO-d6)						S 1	3								
— 166.71		— 146.07	133 57									52.57					~ 2.34 ~ 1.06
(j	¢ ¹ e ⁿ ielyffiligefiligefi	Kantan Jan Jan Jan Jan Jan Ja	tigten den terreten	Wynydd fa'r Monaeg	innyaafteeriyelu, iljaalaetteeli	ny time i kan	Ny mittigen and a	1.1475-17.107-1444-1445-1476-1476-1476-1476-1476-1476-1476-1476	manndakunika kykimisika	ήγγ/holi/eta)h ¹ h-γγί	per kalanda kupi kanyadar (kala		ing angle of the later of the l	plikessitesitesitesitesitesitesitesitesitesi	ŧĹ₽Ҷĸŗ <mark>Ĺ</mark> ₽₽ <i>ŧ</i> ₽₽₽₽₽₽ <mark>₩</mark> ₩		Neter the prime
170	160	150	140	130	120	110	100	90 chemical	80 shift, ppm	70	60	50	40	30	20	10	0

²⁹Si NMR (80 MHz, DMSO-d6)

Characterisation data for allyl 4-(1,1,3,3,3-pentamethyldisiloxaneyl)benzoate:

¹H NMR (400 MHz, DMSO-*d6*): $\delta = 7.98$ (d, ³J= 11Hz, 2H), $\delta = 7.69$ (d, ³J= 11 Hz, 2H), $\delta = 6.12-5.99$ (m, 1H), $\delta = 5.44-5.26$ (m, 2H), $\delta = 4.81$ (m, 2H), $\delta = 0.33$ (s, 6H), $\delta = 0.07$ (s, 8H). ¹³C NMR (100 MHz, DMSO-*d6*): $\delta = 165.39$, 145.77, 133.11, 132.58, 130.27, 128.20, 117.82, 65.04, 1.91, 0.60. ²⁹Si NMR (80 MHz, DMSO-*d6*): $\delta = 9.54$, -2.03. HRMS (ESI) m/z z [M + H] + : calcd for [C₁₅H₂₄O₃Si₂ + H]⁺, 309.1337; found, 309.1328; [M + Na] + : calcd for [C₁₅H₂₄O₃Si₂ + Na]⁺, 331.1156; found, 331.1154. IR (cm⁻¹): 2958, 1724, 1558, 1389, 1275, 1186, 1095-975, 932, 876-638.

 1 H NMR

(400 MHz, DMSO-d6)

¹³ C NM	IR MSO-d6)										
	- 145.77	~ 133.11 ~ 132.58 ~ 130.27 ~ 128.20	— 117.82		S22	2	65.04				1.11 - - 0.60
						1 d J J					
	150 1 [,]	гарана иртан ирт ан 1	120	110 100		80 7() 60 	 190 -1417 1991)14 40	, 30	 н сенцикун сенцикун се 10	

²⁹Si NMR

(80 MHz, DMSO-d6)

300 250 200 150 100 50 0 -50 -100 -150 -200 -250 -300 Chemical shift (ppm)

¹H - ¹³C HMBC

Characterisation data for prop-2-yn-1-yl 4-(1,1,3,3,3-pentamethyldisiloxaneyl)benzoate:

¹H NMR (400 MHz, DMSO-*d6*): δ = 7.96 (d, ³J=11 Hz, 2H), δ = 7.71 (d, ³J=11 Hz, 2H), δ = 4.97 (d, ⁴J=3 Hz, 2H), δ = 3.61 (m, 1H), δ = 0.34 (s, 6H), δ = 0.07 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d6*): δ = 165.48, 146.59, 133.62, 130.14, 128.74, 78.78, 78.38, 52.94, 2.37, 1.05. ²⁹Si NMR (80 MHz, DMSO-*d6*): δ = -9.57, -2.04. IR (cm⁻¹): 3310, 2958, 1730, 1389, 1274, 1259, 1186, 1123-982, 876-788, 757-638.

(100 MHz	z, DMSO-d6)		S 31		
— 165.48	— 146.59	- 133.62 - 130.14 128.74	78.78	78.38	 ~ 2.37 ~ 1.05
And a for the second	dent in polarage with transportation and		Ngarynddillynol Marul farifod yn Marul ffran Marul ffran Marul ffran Marul ffran Marul ffran Marul ffran Marul		
	-, <u>, , , , , , , , , , , , , , , , , , </u>				· · · · · · · · · · · · · · · · · · ·

¹³C NMR

90 80 chemical shift, ppm

30 MHz, DMSC	-d6)				► 502						
					— 9.5 — -2.(
	1										
		anya kana kana kana kana kana kana kana			nin in hinin hinin	laphwi latih lanim di di di		lohden in the state of the stat		, en al a constant de la constant d	
	1° 1 1 1		· · ·			н н сайта				-) -	1 1
, I i		150	100	50	· · · · · · · · · · · · · · · · · · ·		-100	-150	-200	-250	-300

Characterisation data for p-tolyl 4-(1,1,3,3,3-pentamethyldisiloxaneyl)benzoate:

¹H NMR (400 MHz, DMSO-d6): $\delta = 8.11$ (d, ³J=11 Hz, 2H), $\delta = 7.74$ (d, ³J=1 Hz, 2H), $\delta = 7.24$ (d, ³J=11 Hz, 2H), $\delta = 7.13$ (d, ³J=11 Hz, 2H), $\delta = 2.32$ (s, 3H), $\delta = 0.34$ (s, 6H), $\delta = 0.08$ (s, 9H). ¹³C NMR (100 MHz, DMSO-d6): $\delta = 164.62$, 148.37, 146.39, 135.03, 133.12, 129.80, 129.71, 128.68, 121.42, 20.34, 1.82, 0.52. ²⁹Si NMR (80 MHz, DMSO-d6): $\delta = 9.54$, -2.09. HRMS (ESI) m/z [M + H] ⁺ : calcd for [C₁₉H₂₆O₃Si₂ + H]⁺, 359.1493; found, 259.1508. [M + NH₄] ⁺ : calcd for [C₁₉H₂₆O₃Si₂ + NH₄]⁺, 376.1759; found, 376.1777. [M + Na] ⁺ : calcd for [C₁₉H₂₆O₃Si₂ + Na]⁺, 381.1313; found, 381.1320. [M + K] ⁺ : calcd for [C₁₉H₂₆O₃Si₂ + K]⁺, 397.1052; found, 397.1063. IR (cm⁻¹): 2956, 1738, 1509, 1389, 1258, 1199, 1166, 1117, -1018, 875-753.

(100 MHz, DMSO-d6)

²⁹Si NMR

(80 MHz, DMSO-d6)

- 9.54 - -2.09

377.0

376.5

377.5

378.1727

378.0

378.5

379.1761

379.5

380.0 m/z

379.0

HRMS (ESI)

0-375.5

376.0

Characterisation data for 4-methoxyphenyl 4-(1,1,3,3,3-pentamethyldisiloxaneyl)benzoate:

¹H NMR (400 MHz, acetone-d6): $\delta = 8.16$ (d, ³J=11 Hz, 2H), $\delta = 7.80$ (d, ³J=11 Hz, 2H), $\delta = 7.23-7.17$ (m, 2H), $\delta = 7.02-6.97$ (m, 2H), $\delta = 3.82$ (s, 3H), $\delta = 0.40$ (s, 6H), $\delta = 0.13$ (s, 9H). ¹³C NMR (100 MHz, acetone-d6): $\delta = 165.87$, 158.40, 147.64, 145.50, 134.11, 131.30, 129.70, 123.44, 115.21, 55.89, 2.04, 0.89. ²⁹Si NMR (80 MHz, acetone-d6): $\delta = 9.38$, -2.38. HRMS (ESI) m/z [M + NH₄] + : calcd for [C₁₉H₂₆O₄Si₂ + NH₄]⁺, 392.1078; found, 392.1727. IR (cm⁻¹): 2956, 2837, 1734, 1609, 1507, 1389, 1255, 1196, 1066, 871-638.

^{13}C I	NMR
------------	-----

(100 MHz, acetone-d6)

(80 MHz, acetone-d6)

Characterisation data for 2,5-dioxopyrrolidin-1-yl 4-(1,1,3,3,3-pentamethyldisiloxaneyl)benzoate:

¹H NMR (400 MHz, acetone-d6): $\delta = 8.07$ (d, ³J=8 Hz, 2H), $\delta = 7.79$ (d, ³J=8 Hz, 2H), $\delta = 2.92$ (s, 4H), $\delta = 0.34$ (s, 6H), $\delta = 0.07$ (s, 9H). ¹³C NMR (100 MHz, acetone-d6): $\delta = 170.49$, 162.90, 149.68, 134.50, 129.80, 126.81, 26.38, 2.01, 0.80. ²⁹Si NMR (80 MHz, acetone-d6): $\delta = 9.68$, -2.40. ¹⁵N NMR (40 MHz, acetone-d6): $\delta = 198.61$. HRMS (ESI) m/z [M + H] +: calcd for [C₁₆H₂₃NO₅Si₂ + H]⁺, 366.1188; found, 366.1190; [M + Na] +: calcd for [C₁₆H₂₃NO₅Si₂ + Na]⁺, 388.1007; found, 388.1015; [M + K] +: calcd for [C₁₆H₂₃NO₅Si₂ + K]⁺, 404.0746; found, 404.0757. IR (cm⁻¹): 2957, 1774, 1757, 1560, 1427, 1391, 1369, 1254-1186, 1111-987, 842-638.

¹³ C NMR (100 MHz, acetone-	-d9)	— 162.90 — 149.68	~ 134.50 ~ 129.80 ~ 126.81	\$ 59	— 26.38	~ 2.01 ~ 0.80

	- I I	· ·	- I I	- I I	- I - I	- I '	- I I	1		·	· · · ·	- I I	- I I	· · ·	1 '	1		- I - '	1 1	· · ·	
210	200	190	180	170	160	150	140	130	120	110 chemica	100 I shift, pp	90 om	80	70	60	50	40	30	20	10	0

²⁹Si NMR

(80 MHz, acetone-d6)

9.68 -2.40

280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 -36 Chemical shift (ppm)

والتنفية والمروم أتأول التنابيط ومتنا أروا التراري والتراق الما

أيأر الارار أرواك

فطه فيأتها يليمنه بالمألية

Characterisation data for 1,3-dioxoisoindolin-2-yl 4-(1,1,3,3,3-pentamethyldisiloxaneyl)benzoate:

¹H NMR (400 MHz, acetone-d6): $\delta = 8.15$ (d, ³J=11 Hz, 2H), $\delta = 7.94$ (m, 4H), $\delta = 7.83$ (d, ³J=11 Hz, 2H), $\delta = 0.36$ (s, 6H), $\delta = 0.09$ (s, 9H). ¹³C NMR (100 MHz, acetone-d6): $\delta = 163.84$, 162.76, 149.98, 136.16, 134.58, 129.96, 129.79, 126.54, 124.71, 2.04, 0.83. ²⁹Si NMR (80 MHz, acetone-d6): $\delta = 9.71$, -2.39. ¹⁵N NMR (40 MHz, acetone-d6): $\delta = 207.49$. HRMS (ESI) m/z [M + H] ⁺ : calcd for [C₂₀H₂₃NO₆Si₂ + H]⁺, 431.1215; found, 431.1474. IR (cm⁻¹): 2959, 1768, 1741, 1601, 1467, 1362, 1252, 1187, 1089, 1034-1006, 877-607.

(400 MHz, acetone-d6)

1	1 1	· ·	· · ·	1 1	· · ·	- I I	1 1	1 1	- I I	1 1	1 1		· · ·	1 1	1 1	1 1	- I I	- I I	- I I	- I I	- 1	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
										Chemio	al shift ((ppm)										

(80 MHz, acetone-d6)

i hydr

ومقربا والمتعادية والمتعادية والمتعادين والمحالي

Characterisation data for 4-(1,1,3,3,3-pentamethyldisiloxanyl)benzamide:

¹H NMR (400 MHz, DMSO-d6): $\delta = 8.00$ (br s, 1H), $\delta = 7.87$ (d, ³J=8, 2H), $\delta = 7.59$ (d, ³J=8, 2H), $\delta = 7.41$ (br s, 1H), $\delta = 0.31$ (s, 6H), $\delta = 0.06$ (s, 9H). ¹³C NMR (100 MHz, DMSO-d6): $\delta = 167.94$, 142.97, 135.10, 132.64, 126.67, 1.99, 0.74. ²⁹Si NMR (80 MHz, DMSO-d6): $\delta = 9.14$, -2.08. ¹⁵N NMR (40 MHz, DMSO-d6): $\delta = 103.05$. IR (cm⁻¹): 2958, 1653, 1610, 1547, 1405, 1251, 1067, 840-685.

¹³ C NMR (100 MHz, DMSO-d6) (100 MHz, DMSO-d6)	— 142.97	— 135.10 — 132.64	— 126.67				:	S78								~ 1.99 ~ 0.74
فالمنطقة ومعالية والمنافعة والمنطقة والمنافعة والمنافعة والمنافعة والمنافعة والمنافعة والمنافعة والمنافعة والم	electric and a		h.121140 4.516	1. Landa	a. di s u fin contes	Lulas, Jan. 10000	b, yrfaan y Lyffaniby	e dela kina an deservi	n.j (b.s. Mahiji da jis)	tin tille navna taas in daa	er e suitsaarke Se did	et a Schöfen - Lawber	d all dimensional delta o characteri	بنالة ومروقة والمروقة	ulura data shiftin	Lock M Landau

90 80 chemical shift, ppm

00	90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-2
														chemi	cal shit	ft, ppn	ו													

(40 MHz, DMSO-d6)

S80

— 103.05

	· · ·	1 1	· ·	1 1	1 1	1 1	1 1	- I I	· · ·	1 1	1 1				1 1	· · ·	1 1	1 1	1 1	1 1	1 1
240	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30
										chemica	al shift, p	pm									

S81

Characterisation data for N-methyl-4-(1,1,3,3,3-pentamethyldisiloxanyl)benzamide:

¹H NMR (400 MHz, DMSO-d6): $\delta = 8.43$ (m, 1H), $\delta = 7.84$ (d, ³J=11 Hz, 2H), $\delta = 7.60$ (d, ³J=11 Hz, 2H), $\delta = 2.80$ (d, ³J=6 Hz, 3H), $\delta = 0.31$ (s, 6H), $\delta = 0.06$ (s, 7H). ¹³C NMR (100 MHz, DMSO-d6): $\delta = 166.58$, 142.64, 135.32, 132.60, 126.20, 26.16, 1.87, 0.63. ²⁹Si NMR (80 MHz, DMSO-d6): $\delta = 9.62$, -2.09. ¹⁵N NMR (40 MHz, DMSO-d6): $\delta = 99.40$. HRMS (ESI) m/z [M + H] + : calcd for [C₁₃H₂₃NO₂Si₂ + H]⁺, 282.1340; found, 282.1351. IR (cm⁻¹): 3323, 2958, 1636, 1543, 1411, 1318, 1255, 1160-1036, 877-639.

¹³ C NMR														
(100 MHz, DMSO-d6)					S 88									
— 166.58 — 142.64	135.32 132.60	126.20									— 26.16		, 1.87	<u>/</u> 0.63
					4	Stargenge	ederel fotogramme fotogramme							
170 160 150	140 1	30 120	110	100	90 Chemical sl	80 hift (ppm)	70	60	50	40	30	20	10	0

²⁹Si NMR

(80 MHz, DMSO-d6)

¹⁵N NMR (reconstructed,

40 MHz, DMSO-d6)

99.40

	- I - I	- I I							1 1	1 1								'					- I I						
280	270	260	250	240	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
													Che	mical s	shift (p	opm)													

S96

Characterisation data for N,N-dimethyl-4-(1,1,3,3,3-pentamethyldisiloxanyl)benzamide:

¹H NMR (400 MHz, DMSO-d6): $\delta = 7.59$ (d, ³J=11 Hz, 2H), $\delta = 7.40$ (d, ³J=11 Hz, 2H), $\delta = 2.99$ (s, 3H), $\delta = 2.89$ (s, 3H), $\delta = 0.33$ (s, 6H), $\delta = 0.08$ (s, 9H). ¹³C NMR (100 MHz, DMSO-d6): $\delta = 169.96$, 140.68, 137.38, 132.58, 126.07, 34.60, 1.91, 0.68. ²⁹Si NMR (80 MHz, DMSO-d6): $\delta = 9.15$, -2.10. It appeared to be feasible to obtain neither ¹⁵N NMR nor ¹H – ¹⁵N HMBC due to the symmetry of the molecule and ¹⁵N relaxation characteristics. HRMS (ESI) m/z [M + H] ⁺ : calcd for [C₁₄H₂₅NO₂Si₂ + H]⁺, 296.1497; found, 296.1501; [M + Na] ⁺ : calcd for [C₁₄H₂₅NO₂Si₂ + Na]⁺, 318.1316; found, 318.1314; [M + K] ⁺ : calcd for [C₁₄H₂₅NO₂Si₂ + K]⁺, 334.1055; found, 334.1055. IR (cm⁻¹): 3620-3189, 2956, 1932, 1720, 1636, 1545-1394, 1257, 1118-1020, 876-676.

	¹³ C N	MR															
(10	00 MHz, D	MSO-d6)					S100									
— 169.96			\[\] 140.68 \[\] 137.38 \[\] 137.58 \[\] 137.58 \[\] 137.58 \[\] \[20 3C1										— 34.60			
Injline	ŔţŧŧŔĸŗĸĸijĸŢŧŢŧŢĸĬ	********		port lighter all offer	Lifeen Jar yill yill yild yild yild yild yild yild	halestere also a		ugbyternay-sectors	41940000	let Lagen y Page 1 and y	**************************************	10000001110	Rowy of Last		Logicilio picture de	liphen wanter	incest
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Chemical shift (ppm)

²⁹ Si	NMR
------------------	-----

(80 MHz, DMSO-d6)

HRMS (ESI)

S106

Characterisation data for N-allyl-4-(1,1,3,3,3-pentamethyldisiloxanyl)benzamide:

¹H NMR (400 MHz, DMSO): $\delta = 8.66$ (t, ³J=8, 1H), $\delta = 7.88$ (d, ³J=11, 2H), $\delta = 7.62$ (d, ³J=11, 2H), $\delta = 5.97-5.84$ (m, 1H), $\delta = 5.21-5.07$ (m, 2H), $\delta = 3.92$ (m, 2H), $\delta = 0.33$ (s, 6H), $\delta = 0.08$ (s, 9H). ¹³C NMR (100 MHz, DMSO): $\delta = 165.99$, 142.83, 135.38, 135.21, 132.62, 126.36, 115.00, 41.46, 1.90, 0.66. ²⁹Si NMR (80 MHz, DMSO): $\delta = 9.17$, -2.08. ¹⁵N NMR (40 MHz, DMSO): $\delta = 109.66$. HRMS (ESI) m/z [M + H] ⁺ : calcd for [C₁₅H₂₅NO₂Si₂ + H]⁺, 282.1340; found, 282.1351. IR (cm⁻¹): 3574-3138, 2959, 1934, 1721, 1642, 1543, 1429, 1284, 1057, 920, 816-638.
¹H NMR

(400 MHz, DMSO-d6)

(10	00 MHz, DMS	SO-d6)						S11	0								
— 165.99		— 142.83	<135.38 <135.21 <137.62										— 41.46				∕_ 1.90 ∕_ 0.66
upper state of the	######################################	understande state for a series			peg/second-company	tegg) fan stategalan de		₩.#*#*		******	1	for the states		*#****	this special bear gates,	n ^t alatintinan to state	
170	160 15	50 1	40	130	120	110	100	90 Chemical	80 shift (ppm)	70	60	50	40	30	20	10	0

¹⁵N NMR (Reconstructed, 40 MHz, DMSO-d6)

S112

109.66

Characterisation data for 4-(1,1,3,3,3-pentamethyldisiloxanyl)-N-(prop-2-yn-1-yl)benzamide:

¹H NMR (400 MHz, DMSO): $\delta = 8.92$ (t, ³J=7, 1H), $\delta = 7.86$ (d, ³J=11, 2H), $\delta = 7.62$ (d, ³J=11, 2H), $\delta = 4.08-4.06$ (m, 2H), $\delta = 3.09$ (t, ⁴J=3, 1H), $\delta = 0.32$ (s, 6H), $\delta = 0.07$ (s, 9H). ¹³C NMR (100 MHz, DMSO): $\delta = 165.90$, 143.22, 134.59, 132.69, 126.40, 81.23, 72.72, 28.45, 1.90, 0.64. ²⁹Si NMR (80 MHz, DMSO): $\delta = 9.23$, -2.06. ¹⁵N NMR (40 MHz, DMSO): $\delta = 107.75$. HRMS (ESI) m/z [M + H] ⁺ : calcd for [C₁₅H₂₃NO₂Si₂ + H]⁺, 306.1340; found, 306.1340. IR (cm⁻¹): 3327, 3236, 2959, 2120, 1638, 1542, 1423, 1313, 1250, 1112, 1063, 843-639.

¹³ C N	NMR												
(100 MHz,	DMSO-d	l6)				S121							
— 165.90	— 143.22		126.40			— 81.23	— 72.72				— 28.45		
1													
1924 V-1804 m1944 W-1444 V-244	Aradalura Harada Maharada		anal municipa	Maran program in the state	afiyesyati karatana jerejye	Papelanterpartial.Postpart	if for first the second sec	d/Majdardanalanalahina	₩ ₇ , & P ₁ 7, W-0}/10, \$11, ag\$[10-	Alter Anter	estynysty Manyta, Aynaty	tors, sty of a strate	
160 1	50 14	10 1	30 3	120 110	100	90 80 Chemical shif	70 t (ppm)	60	50	40	30	20	10 0

²⁹Si NMR

(80 MHz, DMSO-d6)

S122 9.23

¹⁵N NMR

(reconstructed, 40 MHz, DMSO-d6)

S123

107.75

280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Chemical shift (ppm)

Characterisation data for 4-(1,1,3,3,3-pentamethyldisiloxanyl)-N-phenylbenzamide:

¹H NMR (400 MHz, DMSO): $\delta = 10.25$ (s, 1H), $\delta = 7.96$ (d, ³J=11, 2H), $\delta = 7.80$ (d, ³J=11, 2H), $\delta = 7.69$ (d, ³J=11, 2H), $\delta = 7.35$ (t, ³J=10, 2H), $\delta = 7.10$ (t, ³J=10, 1H), $\delta = 0.35$ (s, 6H), $\delta = 0.10$ (s, 9H). ¹³C NMR (100 MHz, DMSO): $\delta = 165.56$, 143.37, 139.16, 135.83, 132.70, 128.53, 126.78, 123.58, 120.27, 1.93, 0.68. ²⁹Si NMR (80 MHz, DMSO): $\delta = 9.29$, -2.07. ¹⁵N NMR (40 MHz, DMSO): $\delta = 128.85$. HRMS (ESI) m/z [M + H] ⁺ : calcd for [C₁₈H₂₅NO₂Si₂ + H]⁺, 344.1497; found, 344.1505. IR (cm⁻¹): 3305, 2956, 1640, 1602, 1540, 1496, 1444, 1330, 1253, 1082, 840-637.

(400 MHz, DMSO-d6)

S132

¹³C NMR

(100 MHz, DMSO-d6)

S133

²⁹Si NMR

(80 MHz, DMSO-d6)

¹⁵ N NMR (reconstructed, 40 MHz, DMSO-d6)	S135

Chemical shift (ppm)

Characterisation data for 4-(1,1,3,3,3-pentamethyldisiloxanyl)-N-(pyridin-2-yl)benzamide:

¹H NMR (400 MHz, DMSO): $\delta = 10.75$ (s, 1H), $\delta = 8.35$ (m, 1H), $\delta = 8.18$ (d, ³J=8 Hz, 1H), $\delta = 7.99$ (d, ³J=8 Hz, 2H), $\delta = 7.80$ (t, ³J=8 Hz, 1H), $\delta = 7.62$ (d, ³J=8 Hz, 2H), $\delta = 7.12$ (m, 1H), $\delta = 0.30$ (s, 6H), $\delta = 0.04$ (s, 9H). ¹³C NMR (100 MHz, DMSO): $\delta = 166.02$, 152.20, 147.93, 143.88, 138.10, 134.90, 132.74, 127.16, 119.82, 114.71, 2.00, 0.74. ²⁹Si NMR (80 MHz, DMSO): $\delta = 9.31$, -2.06. HRMS (ESI) m/z [M + H] ⁺ : calcd for [C₁₇H₂₄NO₂Si₂ + H]⁺, 345.1449; found, 345.1452. IR (cm⁻¹): 2958, 1675, 1584, 1539, 1442, 1313, 1253, 1313, 1253, 1077, 840-682.

¹ H NMR	

10.0

9.0

7.0

6.0

4.0

^{13}C l	NMR
------------	-----

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2 chemical shift, ppm

WW

2300 2100 Frequency, cm-1

S147

Characterisation data for S-decyl 4-(1,1,3,3,3-pentamethyldisiloxanyl)benzothioate:

¹H NMR (400 MHz, CDCl₃): $\delta = 7.95$ (d, ³J=11 Hz, 2H), $\delta = 7.63$ (d, ³J=11 Hz, 2H), $\delta = 3.08$ (t, ³J=10 Hz, 2H), $\delta = 1.73-1.63$ (m, 2H), $\delta = 1.49-1.39$ (m, 2H), $\delta = 1.36-1.28$ (m, 13H), $\delta = 0.89$ (m, 3H), $\delta = 0.34$ (s, 6H), $\delta = 0.10$ (s, 9H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.22$, 146.64, 137.69, 133.09, 126.11, 31.88, 29.57, 29.53, 29.49, 29.29, 29.15, 28.99, 28.93, 22.66, 14.08, 1.90, 0.74. ²⁹Si NMR (80 MHz, CDCl₃): $\delta = 9.45$, -2.72. HRMS (ESI) m/z [M + H] ⁺ : calcd for [C₂₂H₄₀O₂SSi₂ + H]⁺, 425.2360; found, 425.2368; [M + NH₄] ⁺ : calcd for [C₂₂H₄₀O₂SSi₂ + NH₄]⁺, 442.2626; found, 442.2624; [M + Na] ⁺ : calcd for [C₂₂H₄₀O₂SSi₂ + Na]⁺, 447.2180; found, 447.2161; [M + K] ⁺ : calcd for [C₂₂H₄₀O₂SSi₂ + K]⁺, 463.1919; found, 463.1914. IR (cm⁻¹): 2956-2855, 1669, 1457, 1387, 1254, 1212, 1181, 1058, 916, 842-650.

HRMS (ESI) +MS, 24.5-29.5s #(24-29) 5.-5 425.2368 4-3-2 426.2380 1 427.2340 428.2345 429.2373 0 C22H40O2SSi2, M+nH ,425.24 425.2360 2000 1500-1000-426.2391 500-427.2329 428.2362 0 Intens. x10⁵ 2.0-+MS, 24.5-29.5s #(24-29) 442.2624 1.5-1.0 443.2636 0.5 444.2603 445.2603 0.0 C22H40O2SSi2, M+nNH4,442.26 442.2626

443.2657

444.2594

445.2628

2000

1500

1000-

500

0

Characterisation data for S-phenyl 4-(1,1,3,3,3-pentamethyldisiloxanyl)benzothioate:

¹H NMR (400 MHz, CDCl₃): $\delta = 8.08$ (d, ³J=11 Hz, 2H), $\delta = 7.74$ (d, ³J=11 Hz, 2H), $\delta = 7.61-7.51$ (m, 6H), $\delta = 0.43$ (s, 6H), $\delta = 0.19$ (s, 9H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 190.20$, 147.29, 137.02, 135.04, 133.26, 126.38, 1.93, 0.75. ²⁹Si NMR (80 MHz, CDCl₃): $\delta = 9.63$, -2.67. HRMS (ESI) m/z [M + H] + : calcd for [C₁₈H₂₄O₂SSi₂ + H]⁺, 361.1108; found, 361.1127; [M + NH₄] + : calcd for [C₁₈H₂₄O₂SSi₂ + NH₄]⁺, 378.1374; found, 378.1376; [M + Na] + : calcd for [C₁₈H₂₄O₂SSi₂ + Na]⁺, 383.0928; found, 383.0924; [M + K] + : calcd for [C₁₈H₂₄O₂SSi₂ + K]⁺, 399.0667; found, 399.0666. IR (cm⁻¹): 3063, 2899, 1685, 1579, 1479, 1441, 1387, 1254, 1209, 1182, 1052, 903, 842-646.

HRMS (ESI)

