Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Selective photo-reduction of CO_2 to methanol using Cu doped 1D-Bi₂S₃/rGO nanocomposite under visible light irradiation

Arindam Mandal,^a Soumyajit Maitra,^b Subhasis Roy,^b Baisakhi Hazra,^b Koustuv Ray^c and Kajari Kargupta^a*

^aChemical Engineering Department, Jadavpur University, Kolkata, 700032, India.

^bChemical Engineering Department, Calcutta University, Kolkata, India.

^cDepartment of Chemical Engineering, Indian Institute of Technology Kharagpur, West Bengal, India.

*E-mail:karguptakajari2011@gmail.com.

Content

1. The EDX analysis of (2%) Cu-BSNC/rGO [(2 wt%) Cu doped Bi ₂ S ₃ /rGO]	S1
2. GCMS analysis image of BSNC [Bi_2S_3 rod-shaped nanocapsules]	S2 (a)
3. GCMS analysis image of BSNC/rGO [Bi ₂ S ₃ /rGO]	S2 (b)
4. GCMS analysis images of (1%) Cu-BSNC/rGO [(1 wt%)Cu doped Bi_2S_3/rGO]	S2 (c) & S2 (d)
5. GCMS analysis image of (1%) Cu-BSNC	S2 (e)
6. Apparent Quantum Yield (AQY) calculation for 1% Cu-BSNC/rGO (1%Cu doped Bi ₂ S	5₃/rGO) S3

1. The EDX analysis of (2%) Cu-BSNC/rGO [(2 wt%) Cu doped Bi₂S₃/rGO]

Fig. S1 EDX analysis of (2%) Cu-BSNC/rGO [(2 wt%) Cu doped Bi₂S₃/rGO]

2. <u>GCMS analysis image of BSNC [Bi₂S₃ rod-shaped nanocapsules]</u>

Fig. S2(a) GCMS analysis image of BSNC [Bi₂S₃ rod-shaped nanocapsules].

3. GCMS analysis image of BSNC/rGO [Bi₂S₃/rGO]

Fig. S2(b) GCMS analysis image of BSNC/rGO [Bi₂S₃/rGO]

4. GCMS analysis images of (1%) Cu-BSNC/rGO [(1 wt%)Cu doped Bi₂S₃/rGO]

Fig. S2(c) & (d) GCMS analysis images of (1%) Cu-BSNC/rGO [(1 wt%)Cu doped Bi₂S₃/rGO]

5. GCMS analysis image of (1 wt%) Cu-BSNC

The photocatalytic activity study of (1%) Cu-BSNC is also performed for comparison purpose; GCMS analysis detects both methanol, formic acid as photocatalytic CO_2 reduced products in liquid phase. In this study Methanol and formic acid formation are clearly identified by the value of m/z=32.76 & m/z=46.78, respectively, at retention time 1.50 min.

Fig. S2 (e) GCMS analysis image of (1%) Cu-BSNC.

6. <u>Apparent Quantum Yield (AQY) calculation for 1% Cu-BSNC/rGO (1%Cu doped Bi₂S₃/rGO):</u>

Apparent quantum yield (AQY) is defined as the ratio of number of reacted electrons to the number of incident photons. [Reference (59) -J. Am. Chem. Soc. 2020,142, 4862–4871]

$AQY = \frac{\text{Number of reacted electrons}}{\text{Number of incident photons}} \times 100$	(1)
As given in equation (1), during the photocatalytic reduction of CO_2 , stoichiometrically 6	electrons
are required to produce one molecule of CH ₃ OH.	
$CO_2 + 6H^+ + 6e^- \longrightarrow CH_3OH + H_2O$	2)
Therefore, number of reacted electrons can be calculated by directly multiplying 6 with r	nole
of CH₃OH produced during the photocatalytic reaction.	
Number of reacted electrons= [CH ₃ OH] × 6 × N _A	(3)
where $[CH_3OH]$ = mole of CH ₃ OH produced in time (t) & N _A = Avogadro's number (6.022 ×	× 10 ²³ mol⁻¹)
$[CH_{3}OH] = 215.174 \ \mu mol \ g^{-1} \ h^{-1} \ at \ 420 \ nm, \ where \ t = 10h.$	
Therefore,	
Number of reacted electrons = $215.174 \times 10^{-6} \times 6 \times 6.022 \times 10^{23} = 7.775 \times 10^{20}$	
Now, Number of photons = $\frac{\text{Light absorbed by the photocatalyst}}{\text{The average photon energy}} \times t$	(4)
where; t = time taken for the reaction	
Light absorbed by the photocatalyst = $E \times A$	
E= Input from the source of the light = $37.5 \text{ mW/cm}^2 = 375 \text{ W/m}^2$	
A= 16.81 cm ²	
Light absorbed by the photocatalyst= 375 × 0.001681= 0.630375 J/sec	
The average photon energy = hc/λ	
h =Planck's Constant= 6.626×10^{-34} J.sec; c = velocity of light = 3×10^8 m/sec	
λ = Maximum emission wavelength for the spectrum of the source = 420 nm = 420×10^{-9} r	n
The average photon energy (hc/λ) = 4.7329×10 ⁻¹⁹	
Therefore,	
Number of incident photons = (0.630375/4.7329×10 ⁻¹⁹)×36000 [using equation (4)]	
= 4.795×10 ²² photons	
AQY = (7.775×10 ²⁰ / 4.795×10 ²²) ×100 = 1.62%	