Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Microwave-assisted Catalyst-free Multicomponent One-Pot Green synthesis of highly functionalized Aminocyanopyridnes and Dihydroquinolines in aqua medium and its In-Silico Studies

Loveneesh Kumar^a, Nishant Verma^a, Neeraj Kumar^{a,d}, Hitesh Sehrawat^a, Rupesh Kumar^{a,e}, Ramesh Chandra^{a,b,c,*}
a. Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.
b. Dr. B. R. Ambedkar, Centre for Biomedical Research, University of Delhi, Delhi 110007, India.
c. Institute of Nano Medical Sciences (INMS), University of Delhi, Delhi 110007, India.
d. Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
e. Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India.

General Information

Unless otherwise noted, chemicals were purchased from commercial suppliers at the highest purity grade available and were used without further purification. Thin layer chromatography was performed on Merck pre-coated 0.25 mm silica gel plates (60F-254) using UV light as visualizing agent. Silica gel (60-120 mesh) was used for column chromatography. IR spectra were recorded on FT-IR spectrometer and expressed as wave numbers (cm⁻¹). ¹H and ¹³C NMR spectra were recorded on a Bruker (500 MHz & 125 MHz) and JEOL (400 MHz & 100 MHz) spectrometer. Spectra were referenced internally to the residual proton resonance in CDCl₃ (δ 7.26 ppm), DMSO- d^6 (δ 2.50 ppm) or with tetramethylsilane (TMS, δ 0.00 ppm) as the internal standard. Chemical shifts (δ) were reported as part per million (ppm) in δ scale downfield from TMS. ¹³C NMR spectra were referenced to CDCl₃ (δ 77.0 ppm, the middle peak) and DMSO-*d*⁶ (δ 39.5 ppm, the middle peak). Coupling constants were expressed in Hz. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, dt = doublet of triplet, m = multiples, br = broad, dd = doublet of doublet. High-resolution mass spectra (HRMS) were obtained on a BrukermicrOTOFTM-Q II mass spectrometer (ESIMS).

Failed Scheme:

Scheme S1: Synthesis of 2H-Pyran

Compound characterizations:

4-oxo-4H-chromene-3-carbaldehyde 4a:

Colour and state: Yellow solid; (1.67 g, 96% yield). ¹H NMR(500MHz, CDCl₃) δ ppm: 7.50(t, *J* = 7.5Hz, 1H), 7.53(d, *J* = 8Hz, 1H), 7.53(t, *J* = 7Hz, 1H), 8.29(d, *J* = 7.5Hz, 1H), 8.54(s, 1H), 10.38(s, 1H); ¹³C NMR (125MHz, CDCl₃) δ ppm: 118.5, 120.3, 125.2, 126.1, 126.6, 134.8, 156.1, 160.5, 175.9, 188.5; FTIR (KBr, *v* = cm⁻¹) 764, 844, 1310, 1400, 13, 1561, 1613, 1648, 1693, 2866, 3133, 3415; HRMS (ESI+): *m*/*z* calcd. for C₁₀H₆O₃Na [M+Na]⁺: 197.0215, found 197.0211.

6-bromo-4-oxo-4H-chromene-3-carbaldehyde 4b:

Colour and state: Pale Yellow solid .Yield: 87 %; ¹H NMR (400MHz, CDCl₃) δ ppm: 7.44 (1H, d, J = 8.7 Hz), 7.83 (1H, dd, J = 8.9, 2.5 Hz), 8.40 (1H, d, J = 2.3 Hz), 8.53 (1H, s), 10.35 (1H, s). ¹³C NMR (100MHz, CDCl₃) δ ppm: 115.9, 120.3, 120.4, 126.5, 128.7, 137.7, 154.9, 160.6, 174.6, 188.0; FTIR (KBr, $\nu = \text{cm}^{-1}$) 604, 768, 831, 1118, 1300, 1442, 1460, 1553, 1653, 1692, 2866, 3074, 3416; HRMS (ESI+): *m*/*z* calcd. for C₁₀H₅BrO₃Na [M+Na]⁺: 274.9320, found 274.9318

6-chloro-4-oxo-4H-chromene-3-carbaldehyde 4c:

Colour and state: Yellow solid; Yield: 90 %; ¹H-NMR (400 MHz, CDCl₃) δ ppm 7.50 (1H, d, J = 8.7 Hz), 7.68 (1H, dd, J = 8.7, 2.3 Hz), 8.22 (1H, d, J = 2.7 Hz), 10.33 (1H, s), 8.53 (1H, s); ¹³C NMR (100MHz, CDCl₃) δ ppm: 120.1, 120.2, 125.5, 126.2, 132.7, 134.9, 154.4, 160.6, 174.7, 188.0. FTIR (KBr, $v = \text{cm}^{-1}$) 670, 768, 115, 1303, 1446, 1465, 1559, 1605, 1657, 1694, 2857, 3079, 3420; HRMS (ESI+): m/z calcd. for C₁₀H₅ClO₃Na [M+Na]⁺: 230.9825, found 230.9822

6-iodo-4-oxo-4H-chromene-3-carbaldehyde 4d:

Colour and state : Yellow solid; Yield: 88 %; ¹H-NMR (400MHz, CDCl₃) δ ppm: 7.29 (1H, d, J = 8.7 Hz), 7.99 (1H, d, J = 8.7 Hz), 8.52 (1H, s), 8.56 (1H, s),10.31 (1H, s); ¹³C NMR(100MHz, CDCl₃) δ ppm: 90.8, 120.4, 132.7, 134.9, 138.9, 143.3, 151.8, 160.6, 174.4, 188.0; FTIR (KBr, $v = \text{cm}^{-1}$) 766, 817, 953, 1115, 1395, 1400, 1550, 1594, 1658, 1691, 2866, 3141, 3420; HRMS (ESI+): *m*/*z* calcd. for C₁₀H₅IO₃Na [M+Na]⁺: 322.9181, found 322.9177.

6-bromo-8-iodo-4-oxo-4H-chromene-3-carbaldehyde 4e:

Colour and state: Yellow solid; Yield: 84 %; ¹H NMR (400MHz, CDCl₃) δ ppm: 8.29 (1H, d, J = 2.3 Hz), 8.36 (1H, d, J = 2.3 Hz), 8.60 (1H, s), 10.33 (1H, s). ¹³C NMR (100MHz, CDCl₃) δ ppm: 86.5, 120.0, 120.8, 126.8, 129.0, 146.5, 14.2, 160.7, 174.3, 187.6; FTIR (KBr, $v = \text{cm}^{-1}$) 769, 782, 956, 1295, 1400, 1442, 1541, 1590, 1665, 1695, 2863, 3063, 3451; HRMS (ESI+): *m*/*z*calcd.for C₁₀H₄BrIO₃Na [M+Na]⁺: 400.8286, found 400.8281.

6-nitro-4-oxo-4H-chromene-3-carbaldehyde 4f:

Colour and state : Yellow solid; Yield: 86 %; ¹H NMR (400MHz, CDCl₃) δ ppm: 7.73 (1H, d, J = 9.2 Hz), 8.57 – 8.60 (2H, m), 9.15 (1H, d, J = 2.7 Hz) 10.37 (1H, s); ¹³C NMR (100MHz, CDCl₃) δ ppm: 120.5, 122.6, 125.6, 129.1, 145.6, 158.7, 160.7, 174.4, 187.4; FTIR (KBr, $\nu = \text{cm}^{-1}$) 517, 657, 773, 892, 1122, 1304, 1349, 1460, 1529, 1564, 1626, 1659, 1700, 2890, 3069, 3101, 3416; HRMS (ESI+): *m*/*z*calcd.for C₁₀H₅NO₅Na [M+Na]⁺: 242.0065, found 242.0063.

6-bromo-8-chloro-4-oxo-4H-chromene-3-carbaldehyde 4g:

Colour and state: Yellow solid; Yield: 87 %; ¹H NMR (400MHz, CDCl₃) δ ppm: 7.93 (1H, s), 8.29 (1H, s), 8.59 (1H, s), 10.32 (1H, s); ¹³C NMR (100MHz, CDCl₃) δ ppm: 119.7, 120.2, 125.8, 127.3, 132.9, 137.6, 140.6, 160.6, 174.1, 187.6; FTIR (KBr, $v = \text{cm}^{-1}$) 767, 1059, 1300, 1400, 1447, 1554, 1598, 1657, 1701, 2866, 3141, 3417; HRMS (ESI+): *m*/*z* calcd. for C₁₀H₄BrClO₃Na [M+Na]⁺: 308.8930, found 308.8926.

6,8-dichloro-4-oxo-4H-chromene-3-carbaldehyde 4h:

Colour and state : Yellow solid; Yield: 89 %; ¹H NMR (400MHz, CDCl₃) δ ppm: 7.78 (1H, d, J = 1.8 Hz), 8.14 (1H, d, J = 1.8 Hz), 8.58 (1H, s), 10.33 (1H, s); ¹³C NMR (100MHz, CDCl₃) δ ppm: 120.2, 124.1, 125.0, 127.1, 132.5, 134.9, 150.5, 160.4, 174.1, 187.5; FTIR (KBr, $v = \text{cm}^{-1}$) 672, 770, 844, 1303, 1399, 1451, 1561, 1600, 1664, 1700, 2872, 3066, 3122, 3417; HRMS (ESI+): m/z calcd. for C₁₀H₄Cl₂O₃Na [M+Na]⁺: 264.9435, found 264.9434.

7-hydroxy-4-oxo-4H-chromene-3-carbaldehyde 4i:

Colour and state: Dark brownish solid; Yield: 72 %. ¹H NMR (400MHz, DMSO-D6) δ ppm: 6.93 (1H, s) 6.97 (1H, d, J = 8.8 Hz), 7.94 (1H, d, J = 8.8 Hz), 8.73 (1H, s), (10.07 (1H, s); ¹³C NMR (100MHz, CDCl₃) δ ppm: 103.1, 116.1, 116.9, 119.6, 127.1, 157.4, 162.7, 163.6, 174.1, 188.7; FTIR (KBr, $\nu = \text{cm}^{-1}$) 770, 850, 1093, 1306, 1401, 1460, 1613, 1639, 1685, 3121, 3420; HRMS (ESI+): m/z calcd. for C₁₀H₆O₄Na [M+Na]⁺: 213.0164, found 213.0158

4-oxo-1,4-dihydroquinoline-3-carbaldehyde 10a¹:

Colour and state : Pale yellow solid; Yield: 87 %; ¹H NMR(400MHz, DMSO-D6)δ ppm: 7.45 (1H, t, J = 7.6 Hz), 7.64 (1H, d, J = 8.2 Hz), 7.74 (1H, t, J = 7.6 Hz), 8.19 (1H, d, J = 7.8 Hz),), 8.46 (1H, s), 10.18 (1H, s), 12.68(1H, s); ¹³C NMR(100MHz, DMSO-D6) δ ppm: 116.3, 119.4,

125.3, 125.4, 127.7, 133.0, 139.3, 143.2, 176.2, 188.7; FTIR (KBr, $v = cm^{-1}$) 438, 628, 768, 852, 974, 1284, 1389, 1558, 1620, 1666, 2737, 3126, 3419; HRMS (ESI+): m/z calcd. for $C_{10}H_7O_2NNa [M+Na]^+$: 196.0374, found 196.0371.

6-bromo-4-oxo-1,4-dihydroquinoline-3-carbaldehyde 10b:

Colour and state: yellow solid; Yield: 87 %; ¹H NMR (400MHz, DMSO-D6) δ ppm: 7.62 (1H, d, J = 9.2 Hz), 7.91 (1H, d, J = 9.2 Hz), 8.25 (1H, s), 8.51 (1H, d, J = 6.4 Hz), 10.15 (1H, s), 12.83 (1H, s). ¹³C NMR (100MHz, DMSO-D6) δ ppm: 116.5, 118.2, 121.2, 127.4, 129.2, 135.7, 138.4, 143.6, 174.9, 188.5; FTIR (KBr, $v = \text{cm}^{-1}$); 540, 625, 826, 826, 991, 1068, 1306, 13999, 1471, 1531, 1582, 1624, 1682, 1701, 3453; HRMS (ESI+): *m/z* calcd. for C₁₀H₆BrO₂NNa [M+Na]⁺: 273.9480, found 273.9478.

6,8-dibromo-4-oxo-1,4-dihydroquinoline-3-carbaldehyde 10c:

Colour and state : yellow solid; Yield: 87 %; ¹H NMR (400MHz, DMSO-D6) δ ppm: 8.18 (1H, d, J = 2.8 Hz), 8.23 (1H, s), 8.27 (1H, d, J = 1.8 Hz), 10.10 (1H, s), 12.01 (1H, s); ¹³C NMR (100MHz, DMSO-D6) δ ppm: 114.0, 116.6, 117.9, 127.3, 130.0, 136.3, 138.2, 143.9, 174.2,

188.2; FTIR (KBr, $v = \text{cm}^{-1}$); 626, 765, 965, 1097, 1331, 1398, 1458, 1574, 1688, 2878, 3139. 3416. HRMS (ESI+): m/z calcd. for C₁₀H₅Br₂O₂NNa [M+Na]⁺: 351.8585, found 351.8581.

2-amino-5-oxo-2,5-dihydro-1H-chromeno[2,3-b]pyridine-3-carbonitrile 7a:

Colour and state : Yellow solid; Yield: 98%; ¹H NMR (400MHz, DMSO-D6) δ ppm 6.90-6.96 (2H, m), 7.33 (1H, d, J = 7.8 Hz), 7.40 (1H, t, J = 7.6 Hz), 7.81 (2H, s, br. D₂O exchangeable), 8.11 (1H, d, J = 1.8 Hz), 8.48 (1H, d, J = 2.3 Hz), 10.27 (1H, s, br. D₂O exchangeable); ¹H-NMR (400 MHz, DMSO-D6) (After D₂O exchange) δ ppm 6.82-6.97 (2H, m), 7.26 (1H, d, J = 7.8 Hz), 7.37 (1H, t, J = 7.8 Hz), 8.04 (1H, s), 8.40 (1H, s); ¹³C NMR (100MHz, DMSO-D6) δ ppm: 88.9, 116.1, 116.6, 119.3, 121.8, 124.7, 130.1, 133.0, 143.9, 155.6, 156.0, 161.3, 192.1; FTIR (KBr, *v* = cm⁻¹) 759, 1150, 1250, 1346, 1402, 1595, 1621, 1672, 2222, 2878, 3138, 3416; HRMS (ESI+): *m/z* calcd. for C₁₃H₉N₃O₂Na [M+Na]⁺: 262.0592, found 262.0588.

2-amino-7-bromo-5-oxo-2,5-dihydro-1H-chromeno[2,3-b]pyridine-3-carbonitrile 7b:

Colour and state: Yellow solid; Yield: 92 %; ¹H NMR(400MHz, DMSO-D6) δ ppm: 6.91 (1H, d, J = 8.7 Hz), 7.41 (1H, d, J = 2.3 Hz), 7.52 (1H, dd, J = 8.7, 2.3 Hz), 7.86 (2H, s, br. D₂O exchangeable), 8.12 (1H, d, J = 1.8 Hz), 8.47 (1H, d, J = 2.3 Hz), 10.38 (1H, s, br. D₂O

exchangeable); ¹³C NMR(100MHz, DMSO-D6) δppm: 88.9, 110.3, 116.0, 118.8, 121.4, 127.6, 131.7, 134.8, 143.9, 154.5, 155.7, 161.4, 190.1; FTIR (KBr, *ν* = cm⁻¹) 496, 1167, 1270, 1409, 1498, 1579, 1626, 1640; 2227, 2856, 3220, 3329, 3445; HRMS (ESI+): *m/z* calcd. for C₁₃H₈BrN₃O₂Na [M+Na]⁺: 339.9698, found 339.9697.

2-amino-7-chloro-5-oxo-2,5-dihydro-1H-chromeno[2,3-b]pyridine-3-carbonitrile 7c:

Colour and state: Yellow solid; Yield: 94 %; ¹H NMR (400MHz, DMSO-D6) δ ppm: 6.96 (1H, d, J = 8.7 Hz), 7.30 (1H, d, J = 2.7 Hz), 7.41 (1H, dd, J = 8.9, 2.5 Hz), 7.86 (2H, s, br. D₂O exchangeable), 8.12 (1H, d, J = 1.8 Hz), 8.47 (1H, d, J = 1.8 Hz), 10.37 (1H, s, br. D₂O exchangeable); ¹³C NMR (100MHz, DMSO-D6) δ ppm: 88.9, 116.0, 118.3, 121.1, 122.9, 127.0, 128.9, 132.0, 144.0, 154.1, 155.7, 161.4, 190.2; FTIR (KBr, $v = \text{cm}^{-1}$) 496, 539, 785, 1166, 1268, 1336, 1499, 1578, 1629, 1640, 2227, 2845, 3220, 3327, 3445; HRMS (ESI+): *m*/*z*calcd.for C₁₃H₈ClN₃O₂Na [M+Na]⁺: 296.0203, found 292.0201.

2-amino-7-iodo-5-oxo-2,5-dihydro-1H-chromeno[2,3-b]pyridine-3-carbonitrile 7d:

Colour and state: Brown solid; Yield: 91 %; ¹H NMR (400MHz, DMSO-D6) δ ppm: 6.79 (1H, d, J = 8.7 Hz), 7.54 (1H, s), 7.67 (1H, d, J = 8.2 Hz), 7.86 (2H, s, br. D₂O exchangeable), 8.11

(1H, s), 8.46 (1H, s), 10.37 (1H, s, br. D₂O exchangeable); ¹³C NMR (100MHz, DMSO-D6) δ
ppm: 81.2, 88.9, 116.0, 119.2, 121.1, 128.1, 137.4, 140.6, 143.9, 155.0, 155.7, 161.4, 190.1;
FTIR (KBr, v = cm⁻¹) 529, 788, 1077, 1294, 1400, 1546, 1618, 1649, 2216, 2878, 3131, 3432;
HRMS (ESI+): *m*/*z* calcd. for C₁₃H₈IN₃O₂Na [M+Na]⁺: 387.9559, found 387.9552.

2-amino-7-bromo-9-iodo-5-oxo-2,5-dihydro-1H-chromeno[2,3-b]pyridine-3-carbonitrile 7e: Colour and state: Yellow solid; Yield: 86 %; ¹H NMR (400MHz, DMSO-D6) δ ppm: 7.50 (1H, d, J = 2.3 Hz), 7.91 (2H, s, br. D₂O exchangeable), 8.09 (1H, d, J = 1.8 Hz), 8.16 (1H, d, J = 2.3 Hz), 8.48 (1H, d, J = 1.8 Hz), 10.60 (1H, s, br. D₂O exchangeable); ¹³C NMR (100MHz, DMSO-D6) δ ppm: 89.0, 90.3, 116.6, 115.9, 120.8, 126.5, 132.3, 143.3, 144.3, 154.7, 155.7, 161.4, 190.5; FTIR (KBr, $v = \text{cm}^{-1}$) 791,1062, 1274, 1404, 1578, 1616, 1635, 2227, 2875, 3185, 3416; HRMS (ESI+): *m/z* calcd. for C₁₃H₇BrIN₃O₂Na [M+Na]⁺: 465.8664, found 465.8659

2-amino-7-nitro-5-oxo-2,5-dihydro-1H-chromeno[2,3-b]pyridine-3-carbonitrile 7f:

Colour and state: Brownish solid; Yield: 78 %; ¹H NMR (400MHz, DMSO-D6) δ ppm: 7.11 (1H, d, J = 9.2 Hz), 7.92 (2H, s, br. D₂O exchangeable), 8.15 (1H, d, J = 2.7 Hz), 8.19 (1H, d, J = 2.3 Hz), 8.26 (1H, dd, J = 8.9, 3.0 Hz), 8.52 (1H, d, J = 2.3 Hz), 11.74 (1H, s, br. D₂O

exchangeable); ¹³C NMR(100MHz, DMSO-D6) δppm: 89.0, 115.9, 117.2, 121.2, 125.9, 126.1, 127.8, 139.5, 144.1, 155.8, 161.2, 161.5, 189.5; FTIR (KBr, *v* = cm⁻¹) 534, 650, 806, 1100, 1266, 1349, 1400, 1475, 1542, 1594, 1631, 1660, 2227, 2879, 3146, 3412; HRMS (ESI+): *m/z* calcd. for C₁₃H₈N₄O₄Na [M+Na]⁺: 307.0443, found 307.0438.

2-amino-7-bromo-9-chloro-5-oxo-2,5-dihydro-1H-chromeno[2,3-b]pyridine-3-carbonitrile 7g: Colour and state: Yellow solid; Yield: 82 %; ¹H NMR (400MHz, DMSO-D6) δ ppm: 7.43 (1H, d, J = 2.3 Hz), 7.82 (1H, d, J = 2.3 Hz), 7.91 (2H, s, br. D₂O exchangeable), 8.17 (1H, d, J = 2.3 Hz), 8.49 (1H, d, J = 1.8 Hz), 10.38 (1H, s, br. D₂O exchangeable);¹³C NMR (100MHz, DMSO-D6) δ ppm: 89.0, 110.7, 115.9, 121.0, 123.3, 129.3, 130.6, 134.2, 144.2, 150.4, 155.7, 161.5, 189.6; FTIR (KBr, $\nu = \text{cm}^{-1}$) 514, 791, 1168, 1244, 1327, 1400, 1430, 1620, 1655, 2219, 2874, 3134, 3434; HRMS (ESI+): m/z calcd. for C₁₃H₇BrClN₃O₂Na [M+Na]⁺: 373.9308, found 373.9302.

2-amino-7,9-dichloro-5-oxo-2,5-dihydro-1H-chromeno[**2,3-b**]**pyridine-3-carbonitrile 7h:** Colour and state: Yellow solid; Yield: 74 %; ¹H NMR (400MHz, DMSO-D6) δ ppm: 7.33 (1H, d, J = 2.3 Hz), 7.71 (1H, d, J = 2.3 Hz), 7.93 (2H, s, br. D₂O exchangeable), 8.17 (1H, d, J = 1.8 Hz), 8.50 (1H, d, J = 2.3 Hz), 10.38 (1H, s, br. D₂O exchangeable); ¹³C NMR (100MHz, DMSO-D6) δ ppm: 89.5, 116.5, 121.5, 123.6, 124.1, 128.3, 129.3, 132.1, 144.8, 150.6, 196.3, 162.0, 190.2; FTIR (KBr, *ν* = cm⁻¹) 533, 1233, 1330, 1400, 1424, 1584, 1624, 1638, 2236, 2879, 3178, 3446; HRMS (ESI+): *m/z* calcd. for C₁₃H₈Cl₂N₃O₂Na [M+Na]⁺: 329.9813, found 329.9809.

2-amino-8-hydroxy-5-oxo-2,5-dihydro-1H-chromeno[2,3-b]pyridine-3-carbonitrile 7i: Colour and state: Reddish brown solid; Yield: 64 %; ¹H NMR (400MHz, DMSO-D6) δ ppm: 6.33 (1H, d, J = 2.3 Hz), 6.38 (1H, dd, J = 8.7, 1.8 Hz), 7.40 (1H, d, J = 8.7 Hz), 7.69 (2H, s, br. D₂O exchangeable), 8.12 (1H, d, J = 2.3 Hz), 8.47 (1H, d, J = 1.8 Hz), 10.52 (1H, s, br. D₂O exchangeable), 11.54 (1H, s, br. D₂O exchangeable); ¹³C NMR (100MHz, DMSO-D6) δ ppm: 88.6, 102.7, 108.1, 113.6, 116.2, 122.2, 134.1, 143.7, 154.8, 161.0, 162.4, 164.0, 192.9; FTIR (KBr, $v = \text{cm}^{-1}$) 617, 815, 1142, 1258, 1278, 1398, 1497, 1587, 1630, 1627, 2232, 2876, 3157, 3320, 3401; HRMS (ESI+): *m/z* calcd. for C₁₃H₉N₃O₃Na [M+Na]⁺: 278.0542, found 278.0537.

5-oxo-5,10-dihydrobenzo[b][1,8]naphthyridine-3-carbonitrile 11a: Colour and state : Yellow solid; Yield: 92 %; ¹H NMR (400MHz, DMSO-D6) δ ppm: 7.48 (1H, t, J = 7.8 Hz) 7.59 (1H, d,

J = 8.3 Hz), 7.76 (1H, t, J = 7.8 Hz), 8.11 - 8.14 (2H, m), 8.74 (1H, s), 12.99 (1H, s); ¹³C NMR(100MHz, DMSO-D6) δ ppm: 74.3, 112.6, 114.0, 115.7, 119.5, 125.4, 125.9, 126.0, 133.4, 138.3, 144.3, 154.4, 174.0; FTIR (KBr, $v = \text{cm}^{-1}$) 572, 762, 1141, 1283, 1313, 1366, 1400, 1470, 1546, 1625, 2225, 3136, 3420; HRMS (ESI+): m/z calcd. for C₁₃H₇N₃ONa [M+Na]⁺: 244.0487, found 244.0481.

7-bromo-5-oxo-5,10-dihydrobenzo[b][1,8]naphthyridine-3-carbonitrile 11b: Colour and state : Yellow solid; Yield: 88 %; ¹H NMR (400MHz, DMSO-D6) δ ppm: 7.53 (1H, d, J = 9.2 Hz), 7.87 (1H, dd, J = 9.0, 2.5 Hz), 8.08 (1H, s), 8.13 (1H, d, J = 1.8 Hz), 8.73 (1H, s), 13.07 (1H, s); ¹³C NMR (100MHz, DMSO-D6) δ ppm: 75.3, 112.8, 115.5, 118.8, 121.9, 126.7, 127.9, 136.1, 137.3, 144.5, 154.1, 172.8, 188.4; FTIR (KBr, $v = \text{cm}^{-1}$)542, 614, 829, 1309, 1367, 1400, 1536, 1555, 1626, 1682, 2226, 3075, 3166, 3453; HRMS (ESI+): *m/z* calcd. for C₁₃H₆BrN₃ONa [M+Na]⁺: 321.9592, found 321.9589.

7,9-dibromo-5-oxo-5,10-dihydrobenzo[b][1,8]naphthyridine-3-carbonitrile 11c: Colour and state : Yellow solid; Yield: 84 %; ¹H NMR(400MHz, DMSO-D6) δ ppm 8.15-8.28 (2H,m), 8.77 (1H, s), 10.10 (1H, s), 12.05 (1H, s); ¹³C NMR(100MHz, DMSO-D6) δ ppm: 88.2, 114.0, 116.6,

117.9, 127.3, 127.8, 130.0, 138.2, 138.4, 143.9, 153.6, 174.3, 188.2 ; FTIR (KBr, $v = cm^{-1}$) 530, 805, 873, 1080, 1208, 1365, 1389, 1516, 1561, 1600, 1639, 1700, 2230, 3241, 3450; HRMS (ESI+): m/z calcd. for C₁₃H₅Br₂N₃ONa [M+Na]⁺: 399.8697, found 399.8692.

ethyl 5-oxo-5,10-dihydrobenzo[b][1,8]naphthyridine-3-carboxylate 11d: Colour and state : Yellow solid; Yield: 82 %; ¹H NMR (400MHz, DMSO-D6) δ ppm: 1.28 (3H, t, J = 6.4 Hz) 4.27 (2H, m), 7.46 (1H, t, J = 6.9 Hz), 7.59 (1H, d, J = 7.3 Hz), 7.74 (1H, t, J = 6.4 Hz), 8.15 (1H, d, J = 8.3 Hz), 8.59 (1H, s), 8.95 (1H, s), 12.87 (1H, s); ¹³C NMR (100MHz, DMSO-D6) δ ppm: 14.1, 61.8, 95.3, 111.8, 116.7, 119.4, 125.4, 125.7, 125.9, 133.3, 138.6, 142.1, 148.6, 162.7, 174.7; FTIR (KBr, $\nu = \text{cm}^{-1}$) 1294, 1400, 1555, 1610, 1632, 1718, 3451; HRMS (ESI+): *m/z* calcd. for C₁₅H₁₂N₂O₃Na [M+Na]⁺: 291.0746, found 291.0742

Spectra:

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

Figure: Hydrogen Bond Statistics using AMBER program