β-NaVO₃ as Pseudocapacitive Anode Material for Sodium-Ion batteries

Danlin Yan^a, Yingbo Huang^a, Yanxia Yu^a, Gengyu Cao^{b*}

^aSchool of Science, Guangdong University of Petrochemical Technology, Maoming

Guangdong, 525000, China

^bSchool of Material Science and Engineering, Guangdong University of Petrochemical

Technology, Maoming Guangdong, 525000, China

Figures and Tables

Figure S1. Infrared spectra (a) and Raman spectra (b) of β -NaVO₃ and β -NaVO₃/Gr. The Infrared spectra of β -NaVO₃ and β -NaVO₃/Gr powder showed absorption bands at 545, 610, 888, 915, 930 and 952 cm⁻¹, which are consistent with the previous report ^[1].

To be rigorous, electrodes for *ex-situ* Raman are different from electrodes tested in *ex-situ* XRD. As seen in **Fig. S1b**, Raman spectra of the two samples have similar peaks, and they are consistent with spectra detected by other investigators at room temperature and ambient pressure, which prove the as-prepared samples are NaVO₃ with orthorhombic structure [1, 2].

Figure S2. The N₂ adsorption-desorption isotherms (BET) of β -NaVO₃ and β -NaVO₃/Gr.

Figure S3. (a) Charge-discharge curves of graphene, (b) Rate performance of graphene, (c) Cycle performance of graphene.

Figure S4. Typical charge/discharge profiles of the full cell (β -NaVO₃/Gr//NFPP) and the corresponding NFPP cathode and β -NaVO₃/Gr anode in half cell (a), Cycle

Figure S5. Linear fitting of Z' vs $\omega^{-1/2}$ relationship.

 D_{Na} in $\beta\mbox{-NaVO}_3$ and $\beta\mbox{-NaVO}_3/Gr$ can be calculated from the sloping line in Nyquist plots by

$$D_{Na} = \frac{R^2 T^2}{2A^2 C^2 F^4 \sigma^2 n^4}$$
(1)

where T is the absolute temperature, R the gas constant, A the surface area (0.625

cm2), C the concentration of sodium ions in the active material $(2.4 \times 10^{-2} \text{ mol cm}^{-3})$, F the Faraday's constant, *n* the number of electrodes associated with the reaction, and σ the Warburg factor that is the slope of the lines in Fig.S4. The calculated D_{Na} is 1.8×10^{-16} cm² s⁻¹ for β -NaVO₃, and 5.99×10^{-16} cm² s⁻¹ for β -NaVO₃/Gr. The D_{Na} in β -NaVO₃/Gr is higher than that in β -NaVO₃.

Additionally, $D_{Na}s$ calculated from GITT are much higher than those obtained from EIS. This difference probably originates from the different signal-collection patterns of GITT and EIS. In GITT measurements, a short current pulse with enough relaxation time (100 mins) is applied to eliminate parasitic background current contribution, resulting in a more accurate measurement. In contrast, high-frequency data collection for the EIS measurement could cause polarization in the sample, resulting in sluggish ion diffusion. Similar phenomena have been observed in materials with low conductivity.

Figure S6. *Ex*-situ Raman spectra of β -NaVO₃/Gr electrodes at different states

The peaks located in the region of 100-700 cm⁻¹ can be assigned to the vibration of the VO₅ group, which are strongly related to double chain structure^[1, 2]. The inconspicuous peak located at 859 cm⁻¹ is the fluorescence signal of Na₃VO₄. Furthermore, a weak peak located at 968 cm⁻¹ in the spectrum of electrode charged to 3.0 V can be assigned to V=O1(apex oxygen) stretching mode in Na_xV₂O₅^[3].

	1 0	
Element	Before cycling	After cycling
	(Atomic percentage%)	(Atomic percentage%)
Na in β -NaVO ₃	17.16	25.12
Na in β -NaVO ₃ /Gr	16.77	26.29
V in β -NaVO ₃	21.12	11.97
V in β-NaVO ₃ /Gr	18.91	19.95

Table S1. Atomic percentage variation of electrodes before and after cycling

References

- S. Seetharaman, H. L. Bhat, P. S. Narayanan, Raman Spectroscopic Studies on Sodium Metavanadate, Journal of Raman Spectroscopy 14 (1983) 401-405.
- M. H. Kuok, S. H. Tang, Z. X. Shen, C. W. Ong, Raman spectroscopic studies of α-NaVO3, β-NaVO3 and NaVO3 2H2O, Journal of Raman Spectroscopy 26 (1995) 301-30650.
- 3. I. Loa, K. Syassen, R. K. Kremer, Vibrational properties of NaV₂O₅ under high pressure studied by Raman spectroscopy, Solid State Communications 112 (1999) 681-685.