Supporting Information

Glucose-assisted synthesis of magnetic monohydroxy aluminium oxide @carbon (γ -AlOOH/Fe₃O₄@C) nanocomposite as an innovative sorbent for extraction and pre-concentration of deferasirox from plasma and urine samples

Payam Arabkhani^a, Negar Sadegh,^b, Mahmoud Shahamat^a, Arash Asfaram^{*a}

^a Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran

^b Department of Chemistry, Faculty of Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran.

^{*} Corresponding authors: E-mail address: arash.asfaram@yums.ac.ir (A. Asfaram)

Independent variables		Unit	Levels ($\alpha = 2$)					
-			-α	Low (-1)	Center (0)	High (+1)	+α	
(X ₁) pH		-	3.0	4.5	6.0	7.0	9.0	
(X ₂) Sorbent mass		mg	4.0	6.0	8.0	10	12	
(X_3) Ultrasound time		min	3.0 6.0		9.0	12	15	
(X ₄) Eluent volume		mL	0.050	0.125	0.200	0.275	0.350	
		Indeper	pendent variables			EI	R%	
Run	X ₁	X ₂	X ₃ X ₄		D	EX		
1	6.0	8.0	9.0 0.050		46	.63		
2	6.0	4.0		9.0 0.1		63	.39	
3	7.5	6.0		12	0.125	72	.33	
4	7.5	10		12	0.275	90	.54	
5	7.5	6.0		6.0	0.275	75	.52	
6	7.5	10	12 0.125		86	86.52		
7	7.5	6.0		6.0	0.125	50	.24	
8	4.5	10	6.0		0.275	77.13		
9	4.5	6.0	6.0 0.275		62	62.38		
10	6.0	8.0	9.0 0.20		0.200	86.12		
11	6.0	12	9.0		0.200	99	99.56	
12	4.5	10	12		0.275	84	84.41	
13	6.0	8.0	9.0		0.200	85	85.30	
14	6.0	8.0	3.0		0.200	64	.99	
15	4.5	10	6.0		0.125	57	.57	
16	7.5	10		6.0	0.275	85	.47	
17	6.0	8.0		9.0	0.350	76	.13	
18	7.5	10		6.0	0.125	74	.25	
19	6.0	8.0		9.0	0.200	84	.24	
20	6.0	8.0		9.0	0.200	82	.69	
21	6.0	8.0		9.0	0.200	87	.08	
22	6.0	8.0		9.0	0.200	86	.61	
23	9.0	8.0		9.0	0.200	55	.50	
24	3.0	8.0		9.0	0.200	33	.72	
25	4.5	6.0		12	0.125	51	.41	
26	4.5	10		12	0.125	79	.52	
27	4.5	6.0		12	0.275	71	.18	
28	4.5	6.0	6.0		0.125	32	.52	
29	7.5	6.0		12	0.275	78	.11	
30	6.0	8.0		15	0.200	94	.14	

 Table S1. Design matrix for the CCD.

Source	SS		DF	MS	F-value	<i>P</i> -value	
Model	849	8	14	607	69.03	< 0.0001	
X ₁	821.	6	1	822	93.43	< 0.0001	
X_2	190	9	1	1909	217.1	< 0.0001	
X ₃	103	0	1	1030	117.2	< 0.0001	
X_4	134	1	1	1341	152.5	< 0.0001	
X_1X_2	26.4	-2	1	26.42	3.005	0.1035	
X_1X_3	13.8	8	1	13.88	1.578	0.2283	
X_1X_4	48.2	3	1	48.23	5.485	0.0334	
X ₂ X ₃	2.10	2	1	2.102	0.239	0.6319	
X_2X_4	105.	1	1	105.1	11.95	0.0035	
X ₃ X ₄	165.5		1	165.5	18.82	0.0006	
X ₁ ²	250	0	1	2500	284.3	< 0.0001	
X_2^2	3.00	6	1	3.006	0.342	0.5675	
X_{3}^{2}	17.9	3	1	17.93	2.039	0.1738	
X_4^2	786.	5	1	786.5	89.44	< 0.0001	
Residual	131.	9	15	8.793			
Lack of Fit	118.4		10	11.84	4.391	0.0581	
Pure Error	13.48		5	2.697			
Corr. Total	8630		29				
Model Summary Statistics							
Response	Std. Dev.	CV %	R ²	Adjusted-R ²	Predicted-R ²	Adeq Precision	
ER%	2.965	4.090	0.9847	0.9705	0.9187	34.07	

Table S2. Analysis of variance (ANOVA) for UA-DSPME of DFX.

SS: Sum of squares DF: Degree of freedom MS: Mean square

Table S3. Analytical parameters of established UA-DSPME/HPLC–UV method for DFX in real samples.

Quantitative analysis	Values
Sample volume (mL)	15
Elution solvent (mL)	0.2
Linear range (ng mL ⁻¹)	10-3500
Coefficients of determination (R ²)	0.9938
Limit of detections (LOD) (ng mL ⁻¹)	0.163
limit of quantification (LOQ) (ng mL ⁻¹)	5.421
Preconcentration factor	75
Enrichment factor	128.85
Precision (RSD, %)	2.09-5.22

Isotherm	Plot	Parameters	Value		
Langmuir		$Q_{\rm m} ({\rm mg \ g^{-1}})$	40.28		
$C_e _ 1 _ C_e$	C_e/q_e vs. C_e	$K_L (L mg^{-1})$	1.519		
$\frac{1}{a} = \frac{1}{Ok_{\star}} + \frac{1}{O}$		R ²	0.996		
$\mathbf{Y}_{e} = \mathbf{\Sigma}_{m} \mathbf{W}_{L} - \mathbf{\Sigma}_{m}$		$R_L = 1/(1 + (K_L \times C_0))$	0.013-0.568		
Freundlich	$ln q_e vs. ln C_e$	1/n	0.467		
$l_{1} = -l_{1} K + \frac{l_{1}}{l_{1}} C$		$K_{\rm F}$ (L mg ⁻¹)	3.257		
$lnq_e - lnK_F + -lnC_e$ n		R ²	0.975		

Table S4. Sorption isotherm parameters of DFX by γ -AlOOH/Fe₃O₄@C in various isotherm models.

Fig. S1. Eluents types effect to extraction recovery (ER%) of DFX by γ -AlOOH/Fe₃O₄@C.

Fig. S2. (a) Pareto chart of standardized effects for variables (p:0.05), (b) normal plot of
residuals, (c) observed versus predicted plot, and (d) observed values versus raw residuals for
theER%ofDFXinpredicted
model.

Fig. S3. Profile of predicted values of independent variables along with desirability. The dotted red line indicates the optimal value of each variable.

Figure S4. Linear fits of the sorption of DFX for (a) experimental, (b) Langmuir, and (c) Freundlich isotherm models.

Fig. S5. Extraction recovery of DFX by γ -AlOOH/Fe₃O₄@C in reusability test.